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Enhancing Tropospheric Zenith Wet Delay
Interpolation With Gaussian
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Abstract— Accurate estimation of zenith wet delay (ZWD)
plays a vital role in enhancing precision and reducing the
convergence time of Global Navigation Satellite System (GNSS)
positioning. However, ZWD’s spatial distribution is highly com-
plex and variable due to its dependence on atmospheric water
vapor, which introduces significant challenges in estimation. Tra-
ditional methods, such as ordinary kriging, assume second-order
stationarity and may fail with highly dispersed datasets or sparse
networks. To overcome these limitations, this study proposes
Gaussian process regression (GPR) as a promising alternative.
GPR offers greater adaptability and flexibility in modeling
complex spatial structures without relying on strict stationarity
assumptions. To evaluate GPR’s performance, we utilized 2022
ZWD data from 39 reference stations in North America and
19 reference stations in Hong Kong. Our comparative analyses
reveal that in North America, GPR improves the estimation
accuracy by up to 2.9 cm compared to ordinary kriging while
also reducing computation time. In Hong Kong, while GPR
and ordinary kriging achieve similar fitting accuracy, ordinary
kriging occasionally exhibits rapid convergence to a mean level,
indicating an oversimplification of spatial structures. In contrast,
GPR consistently maintains its performance without such issues.
These findings highlight the adaptability and efficiency of GPR
in diverse geographical settings, making it a robust choice for
ZWD estimation.

Index Terms— Computational efficiency, fitting accuracy,
Gaussian process regression (GPR), ordinary kriging, zenith wet
delay (ZWD).

I. INTRODUCTION

S ITUATED as the Earth’s lowest atmospheric layer, the
troposphere is known to introduce signal distortions in

Global Navigation Satellite System (GNSS), predominantly
quantified by the tropospheric zenith total delay (ZTD). ZTD
is composed of two primary elements: the zenith hydrostatic
delay (ZHD) and the zenith wet delay (ZWD) [1]. ZHD,
constituting approximately 90% of ZTD, can reach extents
of 2–3 m in the zenith direction [2]. Conversely, ZWD varies
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based on atmospheric water vapor content, spanning from a
few centimeters in arid regions to about 35 cm in humid
areas [3]. Despite ZHD’s larger absolute value, attributed to
relatively consistent atmospheric pressure profiles, it is rela-
tively straightforward to model and compute [4]. On the other
hand, the ZWD, with its dependence on the highly variable
water vapor content, presents more significant challenges.

The variability in ZWD poses a significant challenge in
GNSS positioning techniques, particularly in precise point
positioning (PPP) and PPP real-time kinematic (PPP-RTK).
These advanced technologies aim to achieve high-accuracy
positioning at the centimeter level or better in real time.
To enhance the performance of PPP and PPP-RTK, ZWD val-
ues obtained through interpolation methods can be utilized as
a priori values, aiding in ambiguity resolution and improving
the convergence speed of PPP [5]. Furthermore, to augment
PPP-RTK technology, ZWD values derived from GNSS net-
work services can be interpolated to estimate user-specific
ZWD values, which can then be broadcast to GNSS rovers [6].
Moreover, ZWD is directly correlated with the precipitable
water vapor (PWV) in the atmosphere, making its precise esti-
mation critical for both enhancing GNSS positioning accuracy
and improving the reliability of meteorological forecasts [7],
[8], [9]. Precise estimation of ZWD is crucial for improving
GNSS positioning accuracy and can also contribute to the
reliability of meteorological forecasts.

Over the years, various methods and models have been
proposed to address the ZWD error in GNSS. These
approaches can be broadly categorized into empirical models
and interpolation-based methods. Empirical models rely on
atmospheric parameters such as temperature, pressure, and
humidity to compute the delay [10]. Some well-known exam-
ples include the Saastamoinen [11], Hopfield models [12], and
uniform atmosphere tropospheric error model [13].

In recent years, with the rapid development of artifi-
cial intelligence (AI) technology, various AI-based methods
have emerged as a subset of empirical models, demon-
strating promising performance in ZWD estimation. These
methods use similar input parameters as traditional empir-
ical models but leverage machine learning techniques to
capture complex relationships. For instance, Ding et al. [14]
developed a global model outperforming empirical model
by neural networks, while Yang et al. [15], Mohammed [16],
and Selbesoglu [17] have all reported successful applications
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of artificial neural networks in regional ZWD estimation.
More recently, Crocetti et al. [18] presented a global, spatially
explicit ZWD model using the extreme gradient boosting
(XGBoost) algorithm. Their model takes meteorological vari-
ables, geographical location, and time as inputs and can predict
ZWD anywhere on Earth with high accuracy.

These models have proven reliable; however, they often
rely on the very data they aim to correct, as atmospheric
parameters are frequently derived from ZWD analysis. In con-
trast, interpolation approaches estimate a user’s ZWD by
leveraging known ZWD values and positions of reference
stations, establishing a spatial relationship between these ref-
erence points and the user’s location. Traditional interpolation
methods consider ZWD error as a common spatial error, which
can be mitigated through techniques such as the distance-based
linear interpolation model (DIM) [19], linear interpolation
model (LIM) [20], linear combination model (LCM) [21], and
linear surface model (LSM) [5]. These linear-model variants
utilize various combinations of known data points to estimate
tropospheric delay, primarily modeling the distance-dependent
biases between reference stations and user receivers. Despite
their simplicity and widespread use in real-time kinematic
(RTK) and PPP-RTK [22], [23], these methods may have
limited accuracy in areas with complex tropospheric variations.

To address the limitations of linear interpolation methods,
ordinary kriging has emerged as a viable alternative for ZWD
estimation. This geostatistical technique takes into account
both the distance and the spatial correlation structure of the
data, positing that values at proximate locations are more
similar than those at distant ones. By employing a variogram
or semivariogram to quantify the decline in spatial correlation
as the distance between points increases, ordinary kriging
can effectively capture the spatial dependence of ZWD. The
validity of using ordinary kriging for ZWD estimation has
been demonstrated in various studies. Ma et al. [2] showed
that ordinary kriging is suitable across different seasons and
network types. AI-Shaery et al. [24] compared three semivar-
iogram models—spherical, exponential, and Gaussian—and
concluded that their accuracies are comparable. Kim and
Kee [25] applied ordinary kriging with a specific variogram
model tailored for rainy conditions to improve the positioning
of autonomous ground vehicles during rain.

However, ordinary kriging is based on certain strin-
gent assumptions, particularly the stationarity assumption,
which posits that statistical properties are consistent across
space [26]. Some specific weather conditions may lead to the
violation of the spatial stationarity assumption for tropospheric
wet delay. For instance, when there are significant changes in
weather conditions or precipitation occurs, the humidity dis-
tribution in the atmosphere may undergo drastic changes. This
can result in the tropospheric wet delay no longer satisfying
spatial stationarity between precipitation and nonprecipitation
areas, as the difference in humidity between these areas could
be substantial.

In contrast, Gaussian process regression (GPR) does not
require the assumption of spatial stationarity. GPR is a non-
parametric, probabilistic model that infers spatial relationships
through the use of kernels, which are functions that measure

the similarity between data points [27]. By selecting appropri-
ate kernels, GPR can flexibly capture complex spatial patterns
and accommodate varying conditions without the need for the
statistical properties to be consistent across space. This makes
GPR particularly suitable for scenarios with various weather
conditions or heterogeneous environments.

Moreover, Christianson et al. [26] noted that ordinary krig-
ing and its requirement for variogram inspection are inherently
hands-on processes. A significant advantage of machine learn-
ing algorithms, such as GPR, over ordinary kriging is their
capacity for automating kernel inference. This automation
eliminates the need for manual kernel selection and tuning,
processes that are often subjective and time-consuming, thus
paving the way for more efficient and objective analysis [28],
[29]. Table I summarizes the key methods and models dis-
cussed in the literature for addressing ZWD error in GNSS,
along with their key assumptions and limitations.

The main objectives of this article are as follows. First,
we utilize the GPR algorithm to interpolate ZWD values
in North America and Hong Kong and compare it with
ordinary kriging in terms of both accuracy and computational
efficiency. Our findings suggest that ordinary kriging may
not be suitable for data distributions that do not meet the
stationarity assumption, such as those observed in certain
regions of North America and under highly dispersed datasets.
Finally, we identify other factors affecting ZWD estimation,
including the correlation coefficient (CC) of input information
and geographical considerations.

The structure of this article is organized as follows.
Section I provides an introduction to the background and
objectives of the study. Section II details the application of
GPR in predicting ZWD. Section III encompasses the experi-
mental aspect, including comparative analysis of interpolation
methods, and other pertinent evaluations. Section IV presents
a summary of our research findings and conclusions.

II. METHODOLOGY

This section presents the methodology employed in this
study to estimate ZWD using GPR and compare its per-
formance with the ordinary kriging method. We discuss the
calculation of ZWD values at reference stations using PPP,
the application of ordinary kriging for ZWD estimation, and
the proposed GPR algorithm. This section also highlights the
advantages of using PPP-derived ZWD values as a reference
and the importance of selecting appropriate kernel functions
and hyperparameters in the GPR model.

A. ZWD Calculation and Data Processing

As we mentioned before, the ZWD values of reference
stations are the key input in this article, which are calculated by
the dual-frequency ionosphere-free combination model. PPP is
a well-established and widely used method that can estimate
ZWD with high precision. One of the main advantages of PPP
is its ability to process each station independently, without
relying on a reference station network. This simplifies the
computation process and makes the implementation more
straightforward.
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TABLE I
SUMMARY OF METHODS AND MODELS FOR ADDRESSING ZWD ERROR IN GNSS

TABLE II
SUMMARY OF THE STRATEGY OF DATA PROCESSING

Furthermore, by using PPP, we can obtain ZWD estimates
that serve as independent reference values, which is beneficial
for comparing and validating the results from other methods.
Although the network-based model in PPP-RTK can also
estimate ZWD values at reference stations and improve the
estimation accuracy by utilizing interstation constraints, the
resulting estimates may be influenced by the network structure
and constraint settings. Different network designs might lead
to variations in the estimated values.

To ensure the independence and consistency of the ref-
erence station ZWD estimates, we have chosen to use the
single-station PPP method in this study. The PPP-derived
ZWD values can be considered as “true values” that are not
affected by network constraints. This approach is more suit-
able for evaluating the performance of the Gaussian process
interpolation, as the interpolation results will not be influenced
by network adjustment effects.

It is worth noting that the network-based model in PPP-RTK
has its own merits, and future research could consider com-
paring and analyzing the ZWD estimates from both PPP and
PPP-RTK network-based models. However, for the purpose of
this study, which focuses on assessing the performance of the
Gaussian process interpolation method, using PPP-estimated
ZWD values as a reference is more appropriate. The basic
observation equations for code pseudorange P and carrier
phase L observations are given by

P s
r,IF = ρs

r + tr − t s
+ ms

r Zr + br,IF − bs
IF + es

r,IF (1)

Ls
r,IF = ρs

r + tr − t s
+ ms

r Zr

+ λIF
(

N s
r,IF + Br,IF − Bs

IF

)
+ εs

r,IF (2)

where ρs
r represents the geometric distance between the satel-

lite s and receiver r ; tr and t s denote the receiver and
satellite clock offsets, respectively, ms

r Zr accounts for the
tropospheric delay; and br,IF and bs

IF are the receiver and
satellite hardware biases, respectively. The tropospheric dry
delay can be effectively corrected using the widely adopted
Saastamoinen model [35], leaving the tropospheric wet delay
ms

r,w Zr,w as the primary component to be considered. The
satellite clock offset, t s , can be corrected with precise products.
The linearized observation equations for the ionosphere-free
combination are expressed as

E
(

ps
r,IF

)
= µs

r · x + t̂r,IF + ms
r,w Zr,w (3)

E
(
ls
r,IF

)
= µs

r · x + t̂r,IF + ms
r,w Zr,w + λIF N̂ s

r,IF (4)

where ps
IF and ls

r,IF denote the observed minus computed values
for the ionosphere-free pseudorange and carrier phase observa-
tions, respectively; x represents the coordinate information to
be estimated; and µs

r is the unit vector from the receiver to the
satellite. Table II presents the key parameters and processing
strategies employed in our GNSS data analysis.

B. Ordinary Kriging

This section describes the application of the ordinary kriging
method for estimating ZWD at a user’s location, utilizing
observed ZWD values from reference stations [2], [24], [25].
The estimation, denoted as z0, is computed as a weighted sum
of the ZWD values from these stations

z0 =

∑
i

wi zi (5)

where the weights (wi ) are determined based on the spatial
correlation between each station and the user’s location, which
is quantified by the covariance function C(hi j ). This function
represents the covariance between two points, i and j . The
weights are obtained by solving the following system of linear
equations: ∑

i

wi C
(
h j i

)
= C

(
h j0

)
(6)∑

i

wi = 1. (7)

These equations ensure that the estimation accurately
reflects the spatial correlation among observed ZWD values,
considering the spatial separation (h j i ) between reference

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on December 10,2024 at 13:12:22 UTC from IEEE Xplore.  Restrictions apply. 



5802714 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

stations and the user’s location. The variogram function, γ j i =

C(0) − C(h j i ), indicates the variability of ZWD values with
distance. AI-Shaery et al. [24] compared three semivariogram
models, namely, the spherical, exponential, and Gaussian
models, and concluded that their accuracies are comparable.
Based on their findings, we opted to employ the exponential
model in this study

C
(
h j i

)
= b

(
1 − exp

(
−

hi j

a

))
(8)

where hi j is the distance between points i and j in space, and
b and a denote the sill and range parameter of the variogram,
respectively. This model assumes that spatial correlation
decays exponentially with distance, and when the distance
exceeds the range parameter a, the correlation approaches
zero. This model implicitly assumes that the spatial process is
isotropic and second-order stationary, which means: 1) spatial
correlation depends only on the distance between points and
is independent of direction (isotropy) and 2) the mean and
variance of the spatial process are constant throughout the
domain and the covariance is solely a function of the distance
between points (second-order stationarity).

Ordinary kriging’s assumption of stationarity and isotropy,
which might not always be valid in meteorological stud-
ies, is noted. GPR is introduced as an alternative modeling
approach to address potential nonstationarity in the ZWD
estimation.

C. Gaussian Process Regression
In this study, we propose a GPR algorithm to estimate ZWD

values using geographical location information provided by
users, such as Cartesian coordinates. By employing kernel
functions, we capture the complex patterns and nonlinearity
in the data, enabling us to model the relationship between
input features and ZWD values effectively.

Let X denote the input location information and Z represent
the corresponding ZWD values. We assume an unknown
function f that maps the location information X to the ZWD
values Z, which can be modeled as

z = f (x) + ϵ (9)

where ϵ represents the noise term, which is assumed to follow
a normal distribution with zero mean and variance σ 2

ϵ , i.e.,
ϵ ∼ N (0, σ 2

ϵ ).
We treat the outputs (Z) as following a multivariate normal

(MVN) distribution, with the mean vector µ and covariance
matrix 6 determined by the input data (X):

Z ∼ N (µ, 6). (10)

When presented with new locations (χ) lacking observations
but requiring ZWD predictions (Z(χ)), we construct a joint
Gaussian process prior that encompasses both the observed
values Z and the predictions Z(χ), which are also denoted as
Z∗ [

Z
Z(χ).

]
∼ N

([
µ

µχ .

]
,

[
6 6(X, χ)

6(X, χ)⊤ 6(χ , χ).

])
. (11)

Leveraging the proximity of Z(χ) to Z values corresponding
to similar X entries, we can obtain the predictive distribution

Z(χ)|Z by standard MVN conditioning, with the mean and
covariance given by

µZ(χ) = 6(χ , X)6−1Z (12)

6Z(χ) = 6(χ , χ) − 6(χ , X)6−16(X, χ). (13)

The central aspect of our discussion revolves around the
selection of the covariance function 6(·, ·) in (10). When
selecting the covariance function 6(·, ·), we must ensure that
it remains finite and positive definite to serve as a valid MVN
covariance structure. To achieve this, we choose exponential
kernels where its radial decay depends on the distance between
data points. The mathematics equation for the exponential
kernel is as follows:

k p
θ

(
xi , x j

)
= exp

{
−

||xi − x j ||
p

θ

}
. (14)

In this kernel function, || · || denotes the L2 norm of
the vector. This scaling parameter, θ , often referred to as
the characteristic length scale, is crucial for controlling the
smoothness of the resulting stochastic process. The exponen-
tial kernel function measures the similarity between spatial
points. When two points are close, the kernel function value
is close to 1, indicating strong correlation; when two points are
farther away, the kernel function value tends to 0, indicating
weak correlation. By adjusting the scale parameter l, the decay
rate of correlation can be controlled. Unlike the exponential
variogram function, the exponential kernel function does not
directly assume the stationarity and isotropy of the spatial
process. It pays more attention to the local similarity between
the spatial points and portrays the spatial correlation structure
by the magnitude of the kernel function.

To determine the optimal parameters θ for our covariance
function, we define the objective function f (θ) as the negative
log-likelihood function, which measures how well our model
with parameters θ fits the observed data

f (θ) = − logL(Z; θ) (15)

where L(Z; θ) is the likelihood of observing the data Z given
the parameters θ . The negative log-likelihood function can be
expressed as

f (θ) =
1
2

ZT K(θ)−1Z +
1
2

log |K(θ)| +
n
2

log 2π (16)

where K(θ) is the covariance matrix parameterized by θ . The
elements of K(θ) are given by K(θ)i j = k p

θ (xi , x j ), and n is
the number of observations.

Another hyperparameter in (14), denoted as p, must be
positive and is typically chosen based on domain knowledge or
experimental design rather than being inferred from data. The
choice of p significantly affects the smoothness of the stochas-
tic process; for example, setting p = 2 results in the Gaussian
or squared exponential kernel, which produces a Gaussian
process characterized by infinitely smooth and mean-square
differentiable realizations. Conversely, when p ̸= 2, the pro-
cess becomes nondifferentiable. In this article, we estimate the
ZWD, which often exhibits sharp local variations. We chose
the exponential kernel for our GPR model due to its ability
to capture these variations effectively. This kernel decays
more gradually than smoother alternatives such as Gaussian,
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Fig. 1. Schematic for tropospheric wet delay estimation and user positioning.

making it well suited for modeling nonsmooth, localized
patterns without oversmoothing the data. In addition, it strikes
a good balance between model flexibility and computational
simplicity, offering both accuracy and efficiency when com-
pared to more complex kernels such as Matérn. The complete
process of estimating ZWD values using GPR is detailed in
Algorithm 1.

Algorithm 1 Estimating ZWD Values Using GPR
Require: Initial parameter vector θ0 ∈ Rn , lower bounds

lob ∈ Rn , upper bounds upb ∈ Rn , input data: Z =

{Z1, Z2, . . . , Zm} and P = {P1, P2, . . . , Pm}

Ensure: Optimized parameter vector θ∗
∈ Rn .

1: Calculate inter-parameter correlation matrix K ∈ Rm×m

using Eq.14;
2: Define the objective function f (θ) by Eq.15;
3: while θ is not optimal do
4: Initialize the optimization process: θ0 and parameter

boundaries [lob, upb];
5: Evaluate the gradient ∇ f (θt ) and define the search

direction d = −∇ f (θt ) (gradient descent direction);
6: Adjust parameters: θt+1 = θt + αd, where α deter-

mined by backtracking line search is the step size;
7: Evaluate the objective function f (θt+1) and update θ ;
8: end while
9: Calculate ZWD values Z∗ by Eq.12 and Eq.13.

10: return Estimated ZWD values Z∗.

The schematic, which is shown in Fig. 1, illustrates the
architecture and workflow of a rapid PPP system for estimating
tropospheric wet delays and achieving high-accuracy user
positioning. The system consists of three main components:
the broadcast infrastructure, the GNSS receivers, and the
user-side processing. The GNSS receivers collect real-time
observations and precise orbit and clock data, which are
essential inputs for both the service-side PPP processing and
the user-side PPP processing with constraints.

On the service side, the broadcast infrastructure includes a
GNSS satellite constellation and the PPP processing module.
The PPP processing module utilizes the collected GNSS
observations and precise orbit and clock data to estimate tro-
pospheric wet delay corrections using GPR. The interpolated
tropospheric wet delays are then transmitted to the user side
via the broadcast infrastructure. On the user side, the PPP
processing module receives the interpolated tropospheric wet
delays as constraints. By integrating these constraints into the

Fig. 2. Spatial distribution of the 53 reference stations across North America.

Fig. 3. Annual variation of ZWD calculated by PPP for 2022 at (top) INVK,
(middle) ALBH, and (bottom) BREW reference stations.

user-side PPP processing, the system achieves rapid ambiguity
resolution and improved positioning accuracy.

III. NUMERICAL RESULTS

In this section, we present our experimental analysis and
the resulting findings. Our study focused on the analysis of
ZWD values from reference stations across North America,
as well as a smaller network in Hong Kong, for the year
2022. This analysis was conducted using PPP algorithms and
observational data. It is noteworthy that in this study, we set
the initial θ to 1, with a lower bound of 0.01 and an upper
bound equal to max(hi j ).

A. North American Network

To compare the fitting accuracy and computational effi-
ciency of GPR and ordinary kriging, as well as to investigate
the impact of the stationarity assumption on their performance,
we employed data from 39 reference stations across North
America. The spatial distribution of these reference stations is
shown in Fig. 2. This large-scale network covers a wide range
of latitudes, from 30◦N to 75◦N, and longitudes, from 135◦W
to 45◦W, encompassing diverse climatic and topographic con-
ditions.

The network in North America is larger and more complex,
with varying ZWD values across the reference stations. Fig. 3
illustrates the heatmaps of ZWD values for three selected
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Fig. 4. Mean and variance of ZWD for 39 GNSS reference stations in North
America (2022).

reference stations (BREW, ALBH, and INVK) over the course
of a year in 2022. It is worth noting that BREW and ALBH
are geographically close to each other, while INVK is located
farther away from the other two stations.

The heatmaps reveal distinct seasonal patterns in the ZWD
values for all three reference stations, with the highest values
occurring during the summer months. However, a closer exam-
ination reveals that the ZWD heatmaps of BREW and ALBH
exhibit greater similarity to each other compared to INVK,
which displays more pronounced differences. This observation
suggests that the spatial proximity of reference stations may
influence the similarity of their ZWD patterns.

1) Second-Order Stationary Analysis: Ordinary kriging
assumes second-order stationarity of the data, making it essen-
tial to verify whether our dataset satisfies this assumption.
The purpose of this section is to assess the spatial variability
and correlation of ZWD across the North American GNSS
network to validate the feasibility of applying ordinary kriging.
Fig. 4 presents the mean and variance of the annual ZWD
time series at each of the 39 stations. The mean ZWD values
span a range of approximately 10 cm between the lowest and
highest stations, while variances fluctuate considerably from
10 to 70 cm2.

To further investigate stationarity, we examine the ZWD
correlations between station pairs. Taking station KUJ2 as
an example (highlighted in red), Fig. 5 (top) plots the CC
with the nine stations exhibiting the strongest correlations to
KUJ2, such as BAIE (0.60), CAGS (0.73), and VALD (0.86),
all falling between 0.5 and 0.9. In contrast, Fig. 5 (bottom)
shows the nine stations with the weakest correlations to KUJ2,
such as HOLB (0.03), INVK (−0.46), and PRDS (−0.20).
Many of these correlations are very low or negative, departing
substantially from the assumption of second-order stationarity.

The CC is a statistical measure of the strength and direction
of the linear relationship between two variables, with values
ranging from −1 to 1. A value of 1 indicates a perfect positive
correlation, meaning that as one variable increases, the other
variable increases proportionally. A value of 0 suggests no
linear relationship between the two variables.

The analysis of the North American reference station net-
work reveals that it is complex and variable. Inputting ZWD
information from all stations into the interpolation schemes

Fig. 5. CC matrix of ZWD at North American reference stations. (Top) Nine
stations most and (bottom) least correlated with KUJ2 in 2022.

may be ill-advised, as it could lead to inaccurate results due
to the violation of the second-order stationarity assumption.

In Sections III-A2 and III-A3, we will investigate how the
similarity characteristics of the North American network affect
the performance of GPR and ordinary kriging in modeling
and estimating ZWD values, taking into account the proposed
correlation-based station filtering approach.

2) Comparative Analysis of GPR and Ordinary Kriging
Under Different Correlation Thresholds: Based on Fig. 5,
we can conclude that in the North American region, the CC
between reference stations varies significantly.

Theoretically, setting a higher CC threshold should lead to
better interpolation results for both methods. However, when
we set the threshold to 0.8, only six reference stations (ALBH,
BAKE, BREW, CHU2, TUKJ, and YELL) have more than two
reference stations that satisfy this threshold. This implies that
if the threshold is set to 0.8, most areas in North America will
not have sufficient input information for GPR and ordinary
kriging interpolation.
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Fig. 6. Comparison of GPR and ordinary kriging for ZWD estimation at six
stations by MAE, variance, CC, and ET under different CC thresholds.

To determine how the CC threshold affects the performance
of GPR and ordinary kriging and to select an appropriate
threshold value, we conducted interpolation experiments on
the aforementioned six reference stations, setting the thresh-
old to CC > 0.8, 0.7, 0.6, 0.5, and 0.4. We compared the
interpolation results based on four metrics: mean absolute
error (MAE), variance, CC, and execution time (ET). The
MAE represents the average of the absolute bias values,
where the bias value is defined as the difference between the
estimated value and the true value. As shown in Fig. 6, GPR
consistently outperforms ordinary kriging across all metrics,
and the performance of ordinary kriging is more sensitive
to changes in the CC threshold. In contrast, the interpolation
results of GPR are less affected by different CC thresholds.

Theoretically, as the threshold decreases from 0.8 to 0.4,
the MAE should gradually increase. This trend is observed
for CHU2, TUKJ, and YELL. However, ALBH, BAKE, and
BREW exhibit a slight decrease in MAE on the right side of
the figure, which can be attributed to the inclusion of reference
stations with mean values closer to the target station when the
threshold is lowered. As the threshold decreases from 0.8 to
0.4, the CC coefficients of all reference stations decrease,
while the ET increases, which is consistent with theory.

Our experiments demonstrate that GPR outperforms ordi-
nary kriging across all metrics and is less sensitive to changes
in the CC threshold. As the threshold decreases, the MAE
generally increases, although some reference stations may
experience a slight decrease due to the inclusion of stations
with similar mean values. The runtime also increases as the
threshold is lowered, as more reference stations are included
in the interpolation process.

3) Interpolation Performance of Two Methods Across Dif-
ferent Categories of Reference Stations: While we have
compared the fitting performance of ordinary kriging and GPR
across multiple dimensions under different CC values, the
analysis was limited to only six reference stations that met

the criterion of CC > 0.8. This implies that our validation
has been confined to a few localized areas in North America.
Therefore, in this section, we extend our investigation to
validate the fitting performance of both methods across a
broader range of North American regions.

To assess the interpolation performance of other reference
stations in North America and investigate the impact of input
data quantity on interpolation results under the same threshold
CC > 0.5, we designed the following experiment. Based on
the number of other reference stations satisfying the threshold,
the reference stations were divided into three categories.

1) Well-Connected Stations: The number of other reference
stations satisfying the threshold is greater than 5.

2) Moderately Connected Stations: The number of other
reference stations satisfying the threshold is 4 or 5.

3) Poorly Connected Stations: The number of other ref-
erence stations satisfying the threshold is less than or
equal to 3.

For each category, we selected four reference stations and
compared the interpolation performance of GPR and ordinary
kriging by evaluating the CC and root-mean-square (rms)
error. The rms error, which quantifies the average magnitude
of estimation errors, is calculated as

rms =

√∑n
i=1

(
Zpred,i − Z true,i

)2

n
. (17)

As shown in Fig. 7, under a threshold of 0.5, most reference
stations exhibited higher CC and lower rms values for GPR
compared to ordinary kriging. For instance, in Fig. 7, when
MGO2 and ALBH were used as user stations, the CC and rms
values for GPR interpolation were 0.9545 and 0.7327 cm for
MGO2, and 0.9030 and 1.5364 cm for ALBH, respectively.
In contrast, the CC and rms values for ordinary kriging
interpolation were 0.7218 and 3.6495 cm for MGO2, and
0.6946 and 3.5307 cm for ALBH, respectively.

However, some reference stations, such as VALD in Fig. 8,
demonstrated lower CC but smaller rms values for GPR com-
pared to ordinary kriging. In this case, the CC and rms values
for GPR interpolation were 0.8148 and 1.6043 cm, while those
for ordinary kriging were 0.8582 and 2.3967 cm, respectively.
Conversely, some reference stations, such as STJO in Fig. 9,
exhibited higher CC but larger rms values for GPR compared
to ordinary kriging. For STJO, the CC and rms values for
GPR interpolation were 0.6360 and 5.8863 cm, while those
for ordinary kriging were 0.6281 and 5.7770 cm, respectively.

A comprehensive analysis of these results suggests that
GPR is generally superior to ordinary kriging for inter-
polation in North America. Furthermore, we observed that
poorly connected stations consistently performed worse than
well-connected and moderately connected stations in terms of
both CC and rms values. This indicates that regardless of
the interpolation method employed, input data from at least
moderately connected stations are necessary to obtain accurate
interpolation results.

Within the same category of reference stations, we observed
varying degrees of interpolation performance. For some sta-
tions, GPR significantly outperformed ordinary kriging, while
for others, the performance of GPR was comparable to that
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Fig. 7. Comparison of the six-day ZWD values from PPP and estimations at four well-connected stations and time series of their differences.

Fig. 8. Comparison of the six-day ZWD values from PPP and estimations at four moderately connected stations and time series of their differences.

Fig. 9. Comparison of the six-day ZWD values from PPP and estimations at four poorly connected stations and time series of their differences.

of ordinary kriging. Upon analyzing the data characteristics
of these reference stations, we found that those exhibiting
substantial performance differences had input data containing

CC greater than 0.8. These highly correlated data points
provide GPR with more representative samples, enabling it
to better generalize overall patterns.
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Fig. 10. Spatial distribution of the 19 reference stations across Hong Kong.

Fig. 11. Annual variation of ZWD calculated by PPP for 2022 at (top)
HKNP and (bottom) HKSS reference stations.

In this section, we evaluated the interpolation performance
of GPR and ordinary kriging for reference stations in North
America, categorizing the stations based on the number of
connected stations satisfying a given threshold. The results
demonstrated that GPR generally outperformed ordinary krig-
ing. The analysis also revealed that interpolation accuracy
improves with an increasing number of connected stations,
emphasizing the importance of having input data from at least
moderately connected stations for reliable interpolation results.

B. Hong Kong Network

To further investigate ZWD patterns and compare the perfor-
mance of GPR and ordinary kriging, we extended our analysis
to a denser network of reference stations. This expanded
dataset allows for a more comprehensive assessment of the
two methods’ capabilities in capturing spatial variations and
provides insights into their suitability for modeling ZWD in
regions with varying station densities.

The spatial distribution of these Hong Kong reference
stations is illustrated in Fig. 10. This localized study allows
us to examine ZWD characteristics within a specific region.
The heated figures of ZWD values, as depicted in Fig. 11,
calculated using PPP at the HKNP and HKSS reference
stations in Hong Kong throughout 2022 reveal a generally
consistent distribution pattern. This similarity can be attributed
to the geographical proximity of the reference stations in Hong
Kong, which supports the rationale for employing ordinary
kriging in our study, as it requires the assumption of station-
arity, as mentioned in Section II. In addition, this figure reveals
clear seasonal fluctuations in ZWD values. These fluctuations
are primarily attributed to changes in atmospheric water vapor

Fig. 12. (Left) Mean and (right) variance of ZWD for 19 GNSS reference
stations in Hong Kong over the year 2022.

levels, which are influenced by temperature variations and
weather patterns that vary with the seasons.

It is worth noting that the ZWD values at other reference
stations in Hong Kong during this year exhibit similar patterns
to those shown in Fig. 11. For the sake of conciseness, not all
of them are presented here. The occasional blank spaces in the
heatmaps do not indicate zero ZWD values on those particular
days; rather, they are a result of missing data in the observation
files. Nevertheless, such occurrences are infrequent and do
not happen simultaneously across multiple reference stations.
Subsequent fitting and experimental results demonstrate that
this phenomenon has a negligible impact on the estimation of
ZWD values.

1) Second-Order Stationarity Analysis: Before applying
GPR and ordinary kriging for interpolation in the Hong Kong
network, it is crucial to assess the second-order stationarity of
ZWD across the reference stations.

Fig. 12 presents the mean and variance of ZWD for each
of the 19 reference stations using data from the entire year
of 2022. The mean ZWD values in the Hong Kong region
range from 24 to 28 cm, while the variances fall between
55 and 66 cm. Although the mean and variance values differ
slightly among stations, they remain relatively close, indicating
a degree of spatial consistency in ZWD across the network. To
further investigate the spatial correlation, we computed the CC
between the ZWD time series of all station pairs, as shown in
Fig. 13. In our analysis, the CC among all reference stations is
consistently high. The lowest the CC value is 0.97, observed
between station pairs such as HKCL and HKKS, as well as
HKTK and KYC1. The highest CC values reach 0.99, found
between station pairs such as HKOH and HKPC, and HKST
and HKWS. These high CC demonstrate that the temporal
trends of ZWD are highly similar among the different stations,
supporting the assumption of spatial stationarity required for
ordinary kriging.

The observed spatial consistency and strong correlation of
ZWD values among the Hong Kong GNSS stations provide
evidence supporting the second-order stationarity assumption.
This finding validates the applicability of ordinary kriging for
spatially interpolating ZWD values across the network, which
will be further explored in Sections III-B2–III-B4.

2) General Performance Comparision: In this section,
we assess the accuracy and efficiency of ordinary kriging and
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Fig. 13. CC matrix of ZWD time series between all pairs of the 19 GNSS
reference stations in Hong Kong in 2022.

TABLE III
COMPARISON OF GPR AND ORDINARY KRIGING:

MAE, ET, AND THEIR RATIO

GPR in interpolating ZWD values across multiple reference
stations in Hong Kong. The performance of these two methods
will be evaluated and compared to determine their suitability
for estimating ZWD values in the given geographical context.

The core of this evaluation, presented in Table III, centers
on comparing the estimation accuracy and computational
efficiency of both methods. To further elucidate our findings,
we introduce the “Ratio” metric, calculated as the value of
GPR divided by that of ordinary kriging for each correspond-
ing measure. As a result, a ratio value below 1 indicates
that ordinary kriging exhibits lower accuracy or higher ET
compared to GPR.

Our analysis indicates that the MAE ratio value is approxi-
mately 1, demonstrating that the accuracy of ordinary kriging
and GPR is comparably accurate. However, a significant
distinction emerges in terms of computational efficiency.

The computational time ratio, estimated to be around 3.5,
reveals that ordinary kriging demands nearly triple the time
required by GPR for computation. This substantial difference
in computational efficiency stems from the fact that ordinary
kriging necessitates the estimation of two parameters, namely,
the sill and range, for its variogram model. This process
is notably computationally intensive, often requiring iterative
optimization to determine the optimal fit. Conversely, GPR
involves the estimation of a single parameter, denoted as θ , for
its kernel function. This parameter in GPR can be optimized
more directly and efficiently. GPR achieves similar accuracy
levels as ordinary kriging, with the added benefit of greater
ET efficiency. Practically speaking, the adoption of GPR can
significantly reduce estimation time, thereby saving energy and
potentially decreasing financial costs associated with extensive
computational processes.

An intriguing deviation is observed for reference stations
HKFN and T430, as highlighted in bold in Table III. When
these two stations were utilized as user points, the bias in ZWD
estimations from ordinary kriging was significantly higher than
that from GPR. Furthermore, the time ratios for these two
stations are lower than those for other stations. This indicates
that when HKFN and T430 are used as “user,” the difference
in accuracy between ordinary kriging and GPR is larger than
in normal situations, while simultaneously, the execution speed
of ordinary kriging for these stations is quicker compared to
other stations.

To find out the reasons for this situation, we need to analyze
the variogram model. To compare different epoch times,
we find two kinds of estimated variogram model results, which
are shown in Fig. 14. When a normal variogram model is fit
with a higher number of iterations, as shown in Fig. 14 (top),
its sill and range parameters are reasonable, and the model
(represented by a solid line) closely aligns with the empirical
data points (indicated by dotted line). This precise estimation
of spatial correlation allows for more accurate weighting of
reference stations, leading to a nuanced interpolation that more
accurately reflects the underlying distribution of ZWD values.

On the other hand, when the dataset has highly dispersed
points, as shown in Fig. 14 (bottom), the rapid convergence of
the model to a mean level indicates an oversimplification of
spatial structures. The range is pretty low close to 0, while
the sill reaches the mean line quickly. In such cases, the
model tends to assign equal weights to all reference stations,
disregarding spatial correlation and leading to a homogenized
interpolation shown in Fig. 15. This results in a failure to
capture the spatial variability of ZWD values, which is crucial
for accurate regional predictions.

This comparison highlights the importance of a
well-sampled dataset for effective use of ordinary kriging.
A sparse dataset can lead to a flat variogram, incapable of
capturing complex spatial variations, thereby limiting the
effectiveness of the Kriging model. The necessity for an
adequate number of evenly distributed observations across
the study area is thus emphasized.

When a variogram model for ordinary kriging is fit with
a dataset exhibiting high dispersion, the resulting plot shows
this dispersion prominently. This leads to a rapid convergence
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Fig. 14. Comparison of experimental variogram data and fit variogram model
curves, showing (top) well-fit model and (bottom) suboptimal fit.

of the variogram model to a mean line, suggesting a lack
of detailed spatial structure in the model. Consequently, the
estimated ZWD values across the region end up reflecting an
average of the reference stations rather than the actual spatial
variations, as shown in Fig. 15 (bottom) for September 1,
2022 at 1:20 A.M. This is evident in the interpolation results,
which resemble a horizontal cross-sectional plane, indicating
a uniform ZWD value across the Hong Kong territory.

In contrast, employing GPR, a nonparametric Bayesian
approach to regression, with the same dataset yielded signifi-
cantly different results. GPR was able to discern subtle spatial
variations in ZWD values, creating a topographically varied
interpolation surface, as shown in Fig. 15 (top). This model
successfully captured the inherent spatial heterogeneity of the
atmospheric delays, reflecting different ZWD estimations at
various locations. The reason for this phenomenon is because
the exponential kernel function is different from the exponen-
tial variogram function, which is mentioned in Section II-C.
The exponential kernel function does not directly assume
stationarity and isotropy of spatial processes. It pays more
attention to the local similarity between spatial points and
portrays the spatial correlation structure through the magnitude
of the kernel function value.

The clear difference in outcomes between ordinary kriging
and GPR underscores the importance of selecting the right
modeling technique for spatial data analysis. GPR was more
capable of capturing and representing the complex spatial
patterns in the ZWD data, proving its effectiveness in handling
spatially dispersed datasets.

Fig. 15. Comparison of ZWD estimation surfaces over Hong Kong using
(top) ordinary Kriging and (bottom) GPR methods.

3) Comparison of Consistency: This section compares the
consistency of GPR and ordinary kriging methods. Although
we have compared the mean bias in Section III-B1, the
mean bias only reflects the overall estimation accuracy of the
methods. A consistency comparison can reveal the stability of
the methods across different time periods and stations.

Both GPR and ordinary kriging exhibit high consistency
with the PPP results for ZWD estimation at each reference
station. From the left of Fig. 16, it can be observed that
the estimated values from GPR and ordinary kriging almost
overlap with the PPP result curves, with CC above 0.94. This
indicates that both methods can effectively fit the true ZWD
time series.

Comparing Fig. 16, it is found that the consistency between
GPR estimates and PPP results is marginally higher than that
of ordinary kriging. At stations such as HKLM, HKSC, HKLT,
HKTK, and HKWS, the CC of GPR is about 0.01 higher
than that of ordinary kriging, indicating that GPR can capture
the temporal variation characteristics of ZWD with a slight
improvement.

From the rms errors on the right of Fig. 16, the rms values
of GPR are marginally lower than those of ordinary kriging.
Except for the HKSC station, the rms values of GPR are
about 0.1–0.2 cm lower than those of ordinary kriging at
other stations. This suggests that the GPR method has a minor
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Fig. 16. Comparison of the seven-day ZWD values from PPP and GPR estimation at five Hong Kong reference stations and time series of their differences.

advantage in estimation accuracy. Slightly lower rms errors
imply that GPR estimates have marginally lower dispersion
and are somewhat closer to the ground truth values.

When the ZWD values from PPP exhibit sudden changes
(i.e., the peaks in the figure), both GPR and ordinary kriging
estimates show a certain smoothing effect and cannot fully
capture these changes. This phenomenon exists to varying
degrees at each station. For example, at the HKTK station,
around the 87th day, the PPP results show a significant peak,
but the estimates from GPR and ordinary kriging are relatively
smooth and do not fit this change well. This is because both
GPR and ordinary kriging assume that the variable to be
estimated has a certain spatial correlation and smoothness.
These assumptions are reflected in their mathematical models:
GPR uses exponential kernels and ordinary kriging uses a
semivariogram function with an exponential model, assuming
gradual spatial variation.

While these assumptions are generally reasonable, they
may not align with actual conditions at mutation points,
where variable values differ significantly from surrounding
values. Consequently, both methods may struggle to accurately
capture these abrupt changes.

In summary, GPR demonstrates slightly better consistency
and lower rms errors compared to ordinary kriging, though
both methods show limitations in capturing sudden changes
in ZWD values.

4) Localized Rainfall Pattern: The primary objective of
this section is to evaluate and compare the performance of
GPR and ordinary kriging in estimating ZWD values under
nonstationary conditions.

To assess the performance of GPR and ordinary kriging in
nonstationary scenarios, we selected two days, July 21, 2022,
and December 21, 2022, both characterized by light and local-
ized rainfall. Under such conditions, the spatial distribution
of ZWD values is expected to be nonuniform, violating the

Fig. 17. Comparison of ZWD values and residual differences (absolute bias
of ordinary kriging minus absolute bias of GPR) across reference stations on
(top) July 21, 2022 and (bottom) December 21, 2022.

assumption of stationarity. ZWD values were collected from
multiple reference stations across the study area, as depicted
in Fig. 17.

Both GPR and ordinary kriging were employed to interpo-
late ZWD values at each reference station. The interpolated
ZWD values were then compared to the actual ZWD values,
and the bias (difference between the interpolated and actual
values) was calculated for each method. The absolute values
of these biases were computed to facilitate a direct comparison
between the two methods.
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Fig. 18. RMS values of estimated ZWD at reference stations categorized
by geographic location over a 12-month period. (Top) RMS values for edge
reference stations. (Bottom) RMS values for nonedge reference stations.

Fig. 17 presents the ZWD values and the residual differ-
ences. The line plots demonstrate the significant variability
in ZWD values across different reference stations, confirming
the nonuniform spatial distribution of ZWD under localized
rainfall conditions.

The bar plots in Fig. 17 illustrate the difference in absolute
bias between ordinary kriging and GPR for each reference
station. Positive values indicate that the absolute bias of
ordinary kriging is higher than that of GPR, implying that GPR
exhibits better accuracy in estimating ZWD values at those
stations. Conversely, negative values suggest that ordinary
kriging outperforms GPR in terms of accuracy.

The experimental results reveal that under nonstation-
ary conditions induced by localized rainfall, GPR generally
achieves higher accuracy in estimating ZWD values compared
to ordinary kriging. This is evidenced by the predominantly
positive residual differences between the absolute biases of the
two methods, as shown in Fig. 17. The superior performance
of GPR can be attributed to its ability to adapt to nonstationary
spatial processes through the specification of a suitable covari-
ance function, in contrast to ordinary kriging, which relies on
the assumption of stationarity.

These findings underscore the importance of employing
methods that can effectively handle nonstationary spatial
processes when estimating ZWD values, particularly in the
presence of localized precipitation events. GPR emerges as a
promising approach for accurate ZWD estimation under such
conditions.

5) Impact of Geographical Location: This section inves-
tigates the influence of geographical location of reference
stations on the accuracy of GPR in estimating ZWD values.
The rms error is employed as a metric to assess the accuracy
of the estimated ZWD values. The rms error quantifies the
average magnitude of the differences between the estimated

and actual ZWD values, providing a measure of the overall
estimation accuracy.

To assess the impact of geographical location, the reference
stations were categorized into two groups: edge and nonedge
stations. Edge stations are located along the periphery of
the study area, while nonedge stations are situated within
the interior of the region. Fig. 18 presents the rms values of the
estimated ZWD at the edge and nonedge reference stations
over a 12-month period.

The results indicate that the edge stations generally exhibit
higher rms values compared to the nonedge stations, implying
lower accuracy in ZWD estimation at the periphery of the
study area. This observation can be attributed to the reduced
spatial correlation between edge stations and their neighboring
stations, as well as the potential extrapolation errors that may
occur when estimating ZWD values near the boundaries of the
region.

IV. CONCLUSION AND FUTURE WORK

This research has demonstrated the advantages of GPR for
ZWD estimation through comprehensive experiments in both
Hong Kong and North America. Leveraging a year’s worth of
data from 39 stations across North America, we have shown
that GPR delivers accurate ZWD predictions while reducing
computation time compared to traditional methods such as
ordinary kriging.

In the Hong Kong region, where the area is smaller and the
reference stations are densely distributed, resulting in ZWD
values that generally satisfy the stationarity assumption, the
performance of GPR and ordinary kriging is comparable most
of the time. However, we found that ordinary kriging does not
always capture the spatial characteristics of ZWD distribution,
whereas GPR consistently maintains its performance.

Thus, we conclude that GPR’s robustness and adaptability
to varying weather conditions and geographic contexts make
it a versatile tool for ZWD estimation, especially in larger
regions with more complex spatial variations.

Further research could investigate the integration of GPR
with PPP-RTK, comparing and analyzing the ZWD estimates
obtained from both methods to develop a more comprehensive
and accurate ZWD estimation framework.
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