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Overbounding Multipath Error in Urban Canyon
With LSTM Using Multi-Sensor Features

Ruirui Liu and Yiping Jiang

Abstract— Multipath error is a major challenge for positioning
integrity monitoring in autonomous driving, which requires
conservative and effective overbounding methods. Traditional
methods based on Gaussian overbound need the error distri-
bution information, which is hard to obtain when using multiple
features related to multipath as prior knowledge. A recent study
used quantile overbound based on multi-layer perceptron (MLP)
network with promising results but ignored the temporal corre-
lation of multipath and the dynamic surrounding information.
This paper proposes a multipath overbounding method based
on a designed long short-term memory (LSTM) network using
LiDAR, cameras, and global navigation satellite systems data.
The method aims to improve the model’s effectiveness while
ensuring the model’s conservatism. The effectiveness of the model
is assessed using a generalized coefficient of determination, which
shows how close the predicted quantile is to the actual value.
Results show that the LSTM model outperforms the previous
MLP-based study in predicting the quantile of multipath error
in Hong Kong urban data. By using multi-sensor data as input,
the effectiveness of LSTM improves by over 10% when using time
windows of 15 seconds for different urban scenarios. The longer
the time window, the better the performance of effectiveness.
The predicted quantile is then used to compute an overbounded
standard deviation based on a zero-mean Gaussian distribution,
whose conservatism is verified by the cumulative distribution
function. Overall, this study indicates that the use of multi-sensor
data and a longer time window can better facilitate the effective
bounding of the multipath error while ensuring conservatism.

Index Terms— GNSS, multipath, integrity, deep learning,
LSTM.

I. INTRODUCTION

UTONOMOUS driving is a promising technology that

relies on high-integrity localization solutions to ensure
user safety. In order to achieve this goal, it is necessary to
monitor the integrity of the localization component, which may
contain various types of errors resulting in hazardous position
errors. protection level (PL) is a statistical upper bound on the
position error, while alert limit (AL) is maximum allowable
of the position error [1], [2]. An alarm will be triggered when
the PL is greater than AL. The integrity risk (IR) is defined as
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the probability when the position error surpasses the given AL
without users’ awareness [3], [4]. For autonomous driving in
urban environments, a preliminary requirement for integrity
risk has been established as 1078 /hour [5]. In comparison,
for en-route and precision approach users in civil aviation, the
integrity risk requirements are 10~/ /hour and 10~7/150sec,
respectively. This suggests that the IR for autonomous driving
may be even more stringent than that in civil aviation. Addi-
tionally, the AL for autonomous driving is typically confined to
a specific lane, whereas in civil aviation, the AL has a broader
range. Consequently, the PL for autonomous driving needs to
be even more rigorous than that for civil aviation [5], [6].

The PL in the position domain is derived from combining
the bounding standard deviations of all error sources in the
range domain [7], [8]. Typically, measurement errors are
characterized by zero-mean Gaussian distributions. However,
the fitted standard deviation may not represent the error
distributions properly. When error distributions exhibit heavy
tails, the fitted Gaussian distributions would assign a lower
probability to large errors than the actual error distributions.
To ensure conservatism for integrity, an overbounding distri-
bution model is introduced to replace the error distribution.
Specifically, the accumulated tail probability of the overbound
distribution should exceed that of the measurement error
distributions to guarantee conservatism. The conservatism can
be transferred by linear operations to ensure that the PL is
the upper bound of the position error (PE) [8], [9], [10], [11],
[12]. Generally, the overbounding model used the zero-mean
Gaussian distribution [8]. However, there are instances where
the standard deviation of the overbounding model is signif-
icantly larger than that of the actual error distribution. As a
result, the PL based on the overbounding standard deviation
can be overly conservative, potentially leading to a decline in
system availability [8], [13], [14]. Therefore, the process of
overbounding requires finding the right balance between the
model’s conservatism and its effectiveness [14], especially for
autonomous driving with strict requirements. The effective-
ness of modeling is defined as the model’s goodness of fit.
In summary, the overbound model should strive to maximize
effectiveness while ensuring its conservatism to obtain an
appropriate PL.

Overbounding multipath errors, the major source of error
for global navigation satellite systems (GNSS) positioning in
urban areas [2], [15], is crucial for ensuring the integrity of
autonomous driving systems in urban environments. The mul-
tipath error occurs when the receiver simultaneously receives
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Fig. 1. LOS vs NLOS.

satellite signals from multiple paths. One of these signals
comes directly from the satellite without any obstruction and
is known as the line-of-sight (LOS) signal. The other signals
are reflected, scattered, or diffracted by objects around the
receiver, which can distort the amplitude and phase of the
direct-path signal, resulting in measurement errors. When
the satellite and receiver are completely blocked, and only
signals reflected or scattered from surroundings exist, the error
produced by these signals is called non-line-of-sight (NLOS)
error as depicted in Figure 1. Therefore, multipath errors
with LOS signal and NLOS errors exhibit distinct causes and
characteristics [16]. To be more specific, the NLOS errors have
a larger standard deviation on the order of hundreds of meters
than the multipath errors with LOS signal [16], [17]. Some
literature distinguishes NLOS errors and the multipath errors
with LOS signal, while others collectively refer to them as
multipath errors [2], [17]. In the current context, the term
“multipath errors” encompasses both multipath errors with
LOS signal and NLOS errors.

Traditional methods for overbounding multipath errors have
typically employed Gaussian overbound techniques, such as
cumulative distribution function (CDF) overbound, paired
overbound, and two-step Gaussian overbound [10], [18], [19].
The CDF overbound is applied in [20] to model the code
and carrier measurements’ multipath errors, and two-step
Gaussian overbound is used to model multipath errors [14].
However, the traditional methods model multipath errors on
total error distributions without prior knowledge or they rely
solely on elevation angle as prior knowledge by dividing data
based on elevation angle intervals, which has limited prior
knowledge and can lead to an overly conservative model.
If more relevant prior knowledge is provided for overbounding
multipath errors, the model will be more effective while still
ensuring conservatism. However, when introducing more than
one feature as prior knowledge for overbounding multipath
errors, it becomes challenging to determine the joint prob-
ability density function (PDF) and conditional distribution,
especially for continuous variable features [17], [21]. This
limitation renders traditional Gaussian overbound methods
inapplicable. To address this issue, the quantile overbound
method has been proposed. This method leverages the multi-
layer perceptron (MLP), a type of neural network in machine
learning, to model multipath errors and predict the quantile of
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the conditional distribution of multipath errors. This prediction
is then converted into an overbounding standard deviation [22].
Neural networks are a viable method for this purpose, based on
the universal approximation theorem. This theorem states that
neural networks of arbitrary width or depth have the capability
to represent all continuous function [23]. The MLP model is
trained using features obtained from a single epoch of GNSS
measurements, where an “epoch” refers to the duration of
the GNSS measurement update interval [22]. However, this
approach does not account for the temporal correlation of
multipath errors over time. Previous studies have conducted
sufficient research on the temporal correlation of multipath
errors. It has been found that for a static receiver in an open-
sky environment, the multipath errors exhibit a significant
cycle with a time constant greater than 600 seconds [20],
[24], [25], [26]. On the other hand, for a dynamic receiver in
a complex environment, the multipath errors have a smaller
time constant [20]. Additionally, the MLP model in [22]
only selects GNSS measurement features (carrier-to-noise-
density ratio (CNO) and elevation) and a topographic database.
However, the topographic database only considers the static
surrounding information, failing to incorporate the dynamic
surrounding details, such as surrounding vehicles that can
also contribute to the multipath errors in the urban environ-
ment [20]. Furthermore, there is no method provided in [22]
to quantify the effectiveness of the overbounding model.
To address the limitations mentioned, this study proposes an
overbounding method for multipath errors using a designed
long short-term memory (LSTM) network with multi-sensor
input. LSTM is a particular form of recurrent neural network
(RNN) that performs well in capturing temporal correlations,
making it a great success in sequence tasks, such as language
translation and signal processing. To capture both static and
dynamic information, this study employs features from mul-
tiple sensors including camera, LiDAR, and GNSS as input
for the LSTM. The LSTM network generates the quantile of
the conditional distribution based on the temporal correlated
prior knowledge provided by the various sensor features. The
network is trained using designed Huber quantile loss function,
an extension of the classical Huber loss function [27]. Sub-
sequently, an overbounding standard deviation is calculated
using the quantile overbound method. The effectiveness of the
overbounding model is measured using a modified coefficient
of determination %, while conservatism is verified by plotting
the CDF of normalized multipath errors and standard Gaussian
distribution.

This paper is organized as follows. Section II outlines the
details of the proposed overbounding method for multipath
errors, including the overbounding framework architecture,
multipath estimation, feature extraction, LSTM network mod-
eling, quantile overbound, and evaluation. Subsequently,
experiments are conducted using different realistic urban
scenarios in Hong Kong to validate the proposed method
and analyze the effectiveness of the method, also in com-
parison with the benchmark in Section III. Finally, based
on the outcomes analyzed in III, the proposed method is
discussed, highlighting its advantages and future work in
Section IV.
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II. MODELLING METHODOLOGY

This section presents a detailed description of the over-
bounding framework architecture, followed by discussions
on multipath estimation, feature extraction, LSTM network
modeling, quantile overbound, and evaluation. The frame-
work is divided into two parts: the offline component for
pre-processing and the onboard component for real-time pro-
cessing. The offline segment estimates the multipath errors and
models the multipath errors via sensor measurements using
the LSTM network. On the other hand, the onboard segment
generates the quantile of multipath error distribution and the
bounded standard deviation of multipath errors for protection
level calculation. The framework architecture is depicted in
figure 2.

The offline part is performed with the following steps:

1) Obtaining the precise position of the vehicle (rover
station) from Novatel product, SPAN-CPT receiver using
real-time kinematic positioning (RTK) integrated with an
inertial measurement unit (IMU);

Estimating the multipath errors as ground truth for net-
work training, as described in detail in the section II-A;
Extracting temporal correlated image and point cloud
features from camera and LiDAR data using pretrained
deep neural networks and fusing them with GNSS
features, as explained in the section II-B3;

Training the designed LSTM network using the
time-series features and the multipath errors. The net-
work details are provided in the section II-B.

For onboard real-time processing, the following steps are
performed:

2)

3)

4)
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1) Extracting time-series features from multi-sensor data,
similar to Step 3 in the offline part;

2) Predicting the quantile of the conditional distribution by
inputting the time-series features into the trained LSTM
network from Step 4 in the offline part;

3) Obtaining the bounding standard deviation using quan-
tile overbound, as expressed in the section II-B

A. Multipath Estimation

This study focuses on multipath errors in pseudorange
measurement. To estimate the multipath errors, one common
method uses the ionosphere-free code-minus-carrier (CMC)
[8], [14], [20], but it does not consider the NLOS error.
Another method utilizes the single differenced (SD) mea-
surement between two satellites to estimate the multipath
errors [28]. In addition, assuming that the multipath errors
at the base station are negligible compared with the user
receiver, the double differenced (DD) method can be used
for estimating the multipath errors [29]. Both DD and SD
methods assume the multipath errors from the satellite with
the highest elevation angle are negligible, which may be
inaccurate in urban environments. As an alternative method,
the SD pseudorange measurement between the base station
and rover station and its rate of change are used to estimate
the difference receiver clock and clock rate with Kalman filter
to obtain the multipath errors [22], which is adopted for this
study. Specifically, the state update equation and the dynamic
model equation in the Kalman filter are expressed as [22]:

_JeAn | [ eAt—y + SteAfr—y
M= |:CAt.kj| o |: cAfy + Wk
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where z; denotes the measurement at epoch k; xi is the state
at epoch k; v and wy are the measurement noise and process
noise; c is the speed of light; At represents the slowly varying
bias error, including the residual hardware bias of receiver
stations and the residual receiver clock error; §¢ is time interval
between two adjacent epochs; cAf contains the clock drift;
P is pseudorange measurement; superscript s represents the
satellite, subscript r denotes the rover station, b represents
the base station; p is the satellite-to-receiver range and is
calculated using the satellite precise orbit from the precise
orbit and clock product, and the receiver precise position
obtained from the Novatel SPAN-CPT receiver’s output; € is
multipath errors and noise (MPN); Ae represents the rover
station’s MPN, neglecting the residual of ionosphere delay,
troposphere delay, and base station’s MPN; Aé represents the
change rate of Ae.

Since the multipath errors are elevation angle dependent
and NLOS error has a larger variance than the LOS multipath
error [16], [17], [30]. In contrast to the approach that utilizes
a unified standard deviation for all satellites in [22], this
article distinguishes between NLOS and LOS signals for
each satellite by employing sky masks and assigns different
standard deviation to each satellite based on its elevation
angle. The sky masks serve to define the boundaries of
the surrounding buildings at a specific location, which is
derived from a 3D model or sky-view images [31]. Figure 3
provides a visual representation of a sky mask, where the
blue boundary represents its extent. The sky-view images are
obtained through the simulation of a virtual fisheye camera
using Google Earth Studio [32].

The elevation-angle-dependent weight matrix is designed
for the covariance matrix of the measurement noise, given by:

E(sin(elv))

B() = diag(——————0oupn)>) 3)
sin(elv)
where
OLOS, satellite is in the sky mask
OMPN = .
onLos, satellite is out of the sky mask
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where o705 and oy os are two constants that can be set
based on the field environment. As depicted in Figure 3, the
blue boundary represents the sky mask. When a satellite falls
within the sky mask, it predominantly exhibits multipath errors
with LOS signal, and the corresponding o705 is employed.
Conversely, if the satellite is located outside the sky mask,
NLOS error becomes the primary error, and oy os is utilized.
The expectation of elevation angles at all epochs and satellites
in a scenario is also a constant denoted as E(sin(elv)).
Section III-B demonstrates the rationality for the varying
covariance matrix method using real-world data.

B. Multipath Modelling With Designed LSTM Network

1) Deep Learning Background: Neural networks comprise
an input layer, one or more hidden layers, and an output
layer, shown in the left part of figure 4. Each Layer is
constructed with nodes, and each node connects to others with
an associated weight and bias. The right part of figure 4 further
illustrates the detail of each node. The node’s input passes
through the non-linear activation function to determine if the
node is activated, like a neuron.

The hidden layer has various types, such as convolutional,
dense, and recurrent layers. In this paper, the convolutional
layer designed for two-dimensional or three-dimensional data
is used for image feature extraction. The dense layer refers
to each node in one layer being connected to all nodes in
the next layer. The MLP used in [22] and article consist of
several dense layers. RNN is a widely used neural network
containing recurrent layers, which can keep and pass infor-
mation through the same layer. Specifically, RNN contains
cyclical connections that allow the network to incorporate
information from previous steps into the prediction made at
the current step. The activations from a previous step are fed
as inputs into the network for prediction at the current step,
making it naturally suitable for time-series tasks [33], as shown
in the left part of figure 5. However, if the predictions are
highly related to a relatively far time step, the performance of
RNN is degraded due to limited information, which is the so-
called long-term dependency issue. The LSTM network is a
particular form of RNN capable of dealing with the long-term
dependency issue [34], [35], [36]. The right part of figure 5
shows the structure of a single LSTM cell (node) with three
gates, including the input gate i, the forget gate f;, and the
output gate o; [34].

The forget gate determines the information that should be
neglected from the last step, and the input gate determines
which part of the information from input data should remain.
The output gate determines the output information and the
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Fig. 5. LSTM model Structure (left) and LSTM cell (node) structure (right).

remaining information for the next time step. The mathemati-
cal model of the LSTM cell can be analytically expressed by
following equations [37],

Jr=o0wys(hi—1,x:) + by) 4)
ir = o (wi(hi—1, %) + bi) (5)
¢ = tanh(we(hi—1, x;:) + bc) (6)
cr = ficr—1 + G @)
or = o (wo(he—1, xt) + Do) 3
h; = oy x tanh(c;) )

where x; is the cell input at epoch ¢, combined with the output
of a cell h,_ at the previous epoch ¢t — 1, the combined vector
passes through forget, input, and output gates. Then, the forget
gate determines whether to keep cell data c¢;_ at the previous
epoch t — 1, ¢; is the current cell memory state, and A; is the
output of the cell.

2) Designed Neural Network Architecture: Figure 6
presents the neural network architecture developed in this
study. The architecture can be divided into two parts, the left
part of the figure 6 represents the feature extractor component,
which processes the sensor data from the vehicle, including
GNSS, camera, and LiDAR data. Each type of data has a
different feature extractor. The feature extracted from GNSS
data contains the GNSS signal characteristics. The features
extracted from camera and LiDAR data encompass the sur-
rounding features of the vehicle, such as surrounding objects,
surrounding surface, and surrounding geometric relationship.
The feature extractors for camera and LiDAR data consist of
two parts: state-of-the-art feature extractors and extra feature
extractors. The state-of-the-art feature extractor is designed
for extracting general surrounding features, while extra feature
extractor is designed to extract specific features for our specific
task. Details are illustrated in Section II-B3. On the top
right part of the figure 6 is a MLP network with four dense
layers, used in [22]. The MLP network, named MPNMLP, uses
concatenated features from multi-sensor features at one epoch
as input to predict the quantile as the benchmark represented
the results of [22]. The bottom right part of the figure 6 is the
designed network, named MPNLSTM, including an LSTM
layer and three dense layers. The sequential GNSS, image,
and point cloud features are concatenated over a time-series
length t and then inputted into the MPNLSTM. The network
for processing tau length is denoted as MPNLSTM_t. The
value of T in MPNLSTM is set to 5s, 10s, and 15s, to evaluate
the influence of time-series length on modeling. Both models,
along with the extra feature extractors, are trained through
backpropagation of gradients to optimize the weights and
biases, with the number of hidden nodes varying based on
the number of features n. It should be noted that the batch
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normalization layer, dropout layer, and activation function are
not shown in figure 6.

3) Feature Extractor Component: As depicted in Figure 6,
this study utilizes GNSS, camera, and LiDAR data from
the vehicle to extract signal-related features and surrounding
features in the feature extractor component. Signal-related
features: elevation angle, CNO and azimuth angle, which can
be extracted from GNSS data, are highly related to multipath
error [8], [14], [26], [30], [38], [39]. In the feature extractor
component, these features, denoted as GNSS features, are
normalized and trained in the neural network. The surround-
ing environment also significantly influences multipath error.
Camera and LiDAR data provide physical information about
the vehicle’s surroundings, including the surfaces of buildings,
vehicles, pedestrians, and roads. These data sources are used
to extract abstract surrounding features, encompassing both
dynamic and static features, through the training of neural
networks. Dynamic features include semantic abstract features
of objects like pedestrians and vehicles, while static features
pertain to buildings and lanes. In this study, the image feature
extractor is used to derive effective image features, enabling
rapid training and optimal performance. The extractor employs
the pretrained CSPDARKnet53 model, which was initially
trained on the COCO dataset [40]. This dataset is extensive
and designed for image recognition and detection tasks. A pre-
trained model, in essence, is a deep learning model previously
trained on a large dataset for a specific task, and can be used
as is or customized for different tasks. In this context, a fixed
pretrained model is used to extract high-level features from
camera data in the semantic space. To extract specific image
features associated with multi-path errors, an extra feature
extractor, is incorporated into the training process. The extrac-
tor consists of three convolution layers with 3 x 3 kernels. The
dimensionality is reduced to a 19 x 19 x 1 feature map, which
is subsequently reconstructed into a 361-feature array denoted
as fimg = {fimg1» -+ » fimgse }- Moreover, this study uses the
pretrained PointNet++ network on the ScanNet dataset for
point cloud feature extraction to obtain surrounding semantic
features with LiDAR data input. The PointNet++ network is
trained to predict point-wise labels for semantic segmentation
tasks [41]. The input is 8192 down-sampled points, and the
outputis a 16 x512x 1 feature map in the pretrained backbone.
The 10Hz LiDAR data is aligned with the 1Hz GNSS data
by averaging the point cloud features across ten epochs. The
16 x 512 x 1 feature map is then fed into an extra feature
extractor with several convolution layers and flattened into a
512-feature array, denoted by fpc = {fpc;» - s Foesin)-

4) Loss Function: Statistically, minimizing the quantile loss
(QL) can obtain the quantile from a distribution [42]. Since
the traditional QL function is non-differentiable at zero, and
the magnitude of the constantly updated gradient is significant
for small errors, it is difficult for the LSTM network to
converge to the minimum value by using the traditional QL
function. Therefore, a new Huber quantile loss (HQL) function
is designed based on the Huber loss function to overcome this
problem [27].

The traditional QL function EqQL is an asymmetric convex
loss function that assigns a weight of g to the overestimation
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of errors and a weight of 1 — g to the underestimation of
errors, where the probability of expected quantile is denoted
by g € (0, 1). For a dataset D = {x;, y,-}lNzl, the y; is from
an unknown distribution Z with prior knowledge x;, denoted
as y; ~ Z|x; and N is the number of samples, and a given
probability ¢, the quantile of conditional possibility Fy ~12| (@
can be transformed to find a function 6(x) to minimize the
quantile regression cost function JqQL, which is the mean

of EqQL.

Filz@) =6 = arg;nin(JqQL(% 6(x)) (10)
TLE(y, 0x)) : = Eyez [L25(y =001 (D)
LO€) =€(g—bc(e <0).VeeR  (12)

where § is the Dirac delta function.

And the HQL function is designed as an asymmetric
quadratic loss function for |€| < o around zero to make the
loss function smooth and linear for || > o, where 0 € R
is a given positive constant. The HQL function is convex and
first-order differentiable expressed as

lgx — 8e(e < 0)[Ho (€)
o

L% ) = (13)

where Hy (€) is the Huber loss function [27], represented as

1 2
—€”, le] <o

Hy(e) = 2 (14)
o(le] —=0), le|l>o0o

2

qr = kq with k as a zooming factor close to 1. k is used to
deal with the guantile zoom issue, where the minimizer of the
mean of Ef Q (e) is not precisely equal to the desired quantile
of a distribution. This is caused by using the expectation in

extra features extractor

GNSS features
(Sequential or
single epochs)
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the interval [—o, o] as the expectation of the quadratic loss
function instead of the quantile value. Therefore, k can be
derived as:

(1 —e 179
(1= em1707) + (1 - g)2(1 — e74°)
a formal derivation is provided in the Appendix.

The HQL function combines the advantage of the quadratic
loss function in computation efficiency and the advantage of
the QL function in outlier robustness. In particular, if o — 0,
the loss function becomes the QL function. figure 7 com-
pares both loss functions, where the desired probability g
09,0 =0.5.

Additionally, an I/, norm regularization part % orm
%Zwiz is added to the loss to generalize the model to
avoid the overfitting issue. Therefore, the objective function
is expressed as

Ty, 0(x) = Eyezc[LIPH (v = 0] + Loorm
(16)

k

15)
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Therefore, the 6 is obtained by minimizing the objective
function. The performance of HQL and QL in a simulation
will be presented in Section III-A.

C. Quantile Overbound

This research employs the quantile overbound to estimate a
conservative standard deviation by using a zero-mean Gaus-
sian distribution with the same desired quantile as the error
distribution. Traditional Gaussian overbound is not suitable
for this research, which requires a known error distribution,
challenging to obtain from the conditional MPN distribution
using LiDAR, camera, and GNSS data as prior knowledge.
Figure 8 demonstrates the quantile overbound method.

As shown in Figure 8, the blue line represents the PDF of
the actual error distribution, the red line represents the PDF
of the overbound model, while the dotted line indicates the
quantile value of the actual error at the expected probability
of g. Notably, both PDFs share the same quantile value, which
enables the derivation of the standard deviation o, of the
overbound model, given by:

_r
Fi/'(q)
where y is quantile of the actural error distribution at expected
probability g, which can be estimated as y = 6(x|g) in
Section II-B; FJ\_/’1 (q) is the inverse CDF of Gaussian distri-
bution. Therefore, the overbound model is conservative if the

probability that the error exceeds y is not greater than the tail
probability of the overbound model.

0y = (17)

D. Verification and Evaluation Method

A metric is used for measuring the model’s goodness of fit
to reflect its effectiveness,
ILE (0, 6(x)
Z=1- oL =1-
Jg" s Fyez)-1)

TP Fyly @)

qQL(y, Fly @)
(18)

where F 1Z(q) is the quantile value of total distribu-
tion Z, and f(x) is determined by model’s prediction
using input x. From (10) and (11), JqQL(y,Q(x)) =

oL Oy, F y_ Nl Zix (g)) is the expectation of quantile loss function
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us1ng the predicted quantile of conditional possibility. And the

(y, y~ 7 — 1)(g)) means the loss without model predic-
tlon using the quantile of total distribution Z. If #Z — 1, the
model has high goodness of fit; and if #Z < 0, the result from
the model is worse than the result using the quantile of total
distribution Z directly. In this study, x equals the features F
corresponding with the multipath errors y.

The overbound models are also checked by plotting CDFs
of normalized MPN distribution to evaluate if the model is
bounded conservatively. This study uses the quantile over-
bound method to get the overbound standard deviation in
Section II C. Then the normalized MPN is calculated by
Ynorm = & , and the Gaussian distribution line should overpass
the Ynorm at the probability ¢ when the model is conservative.

IITI. SIMULATION AND EXPERIMENTAL RESULTS

This section presents a simulation and several experiments.
A simulation compares the performance between the HQL and
QL functions to illustrate the proposed HQL function suitable
for this research. Then, several experiments are conducted
on the real-world data in Hong Kong from the UrbanNav
dataset to analyze the impact of different sensor features
and compare the performance between the proposed LSTM
network and the benchmark, MLP in [22]. Furthermore, the
models’ conservatism is validated, and the models’ efficiency
is analyzed.

A. Simulation Test for Huber Quantile Loss Vs Quantile Loss

To compare the performance of the modified HQL func-
tion and the QL function, a simulation test is conducted.
The simulation test is designed using two random variables,
x ~U(@4,16) and y ~ U(0, 10 x PDFps(y)). Here, U(a, b)
represents a uniform distribution over the range [a, b], and
PDFys ) denotes the PDF of a Gaussian distribution. The
objective of this simulation is to emulate the modeling of
multipath errors in a simplified manner. For each given value
of x, the conditional distribution of y follows a Gaussian distri-
bution. The x values are generated using a uniform distribution
to ensure an unbiased dataset. A simple network with three
dense layers and a designed probability ¢ = 0.99 are set
up for testing using different loss functions: HQL (o = 0.5)
and QL. In this context, y represents the ground truth of the
model, while x is the input feature. After training the designed
network for 3000 epochs, the results are presented in the left
part of Figure 9. The simulated data is represented by the
blue dot, the red curve represents the predicted value of the
quantile using the HQL model, and the orange curve represents
the predicted quantile using the QL model.

The dataset D is randomly separated into a training, val-
idation, and testing dataset with the ratio [0.7,0.15,0.15],
respectively. The same training test is repeated 200 times, and
the averaged Z results on the testing dataset and all data for
the HQL and QL models are shown in Table I and figure 9
right part.

From Table I and figure 9 right part, it can be concluded
that the HQL model converges at around 1500 training epochs
faster than the QL model at about 2500 training epochs. And
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Fig. 9.
QL model on the testing dataset and all data (b).

TABLE I

% VALUES USING HQL AND QL MODEL ON THE TESTING DATASET
AND ALL DATA FOR DIFFERENT EPOCHS

epochs | HQL_test | HQL_all | QL_test | QL_all
500 0.3552 0.3480 0.2790 0.2820
1000 0.5479 0.5531 0.4765 0.4785
1500 0.5804 0.5887 0.5485 0.5508
2000 0.5897 0.5981 0.5660 0.5684
2500 0.5938 0.6027 0.5723 0.5748
3000 0.5959 0.6052 0.5729 0.5753

before convergence, the HQL performs far better than the QL
model with % values being 0.35 and 0.28 at training epoch
500, and 0.55 and 0.475 at training epoch 1000, respectively.
Also, the performance for HQL has a tiny improvement
compared to the QL model after convergence. Figure 9 left
part illustrates this improvement figuratively, especially at the
tail of the distribution. A possible reason is that the data on
both sides of the tails are denser than the middle part, resulting
in a smaller magnitude of errors between the predicted value
and ground truth than the central part. HQL is designed to
accommodate such minor errors better than QL. Therefore, the
designed HQL converges more efficiently and is more suitable
for multipath modeling than the QL model.

B. UrbanNav Dataset and Analysis

This section begins by introducing the dataset used in
the experiments, followed by an analysis of MPN distri-
bution in the dataset. Subsequently, a temporal correlation
analysis of MPN in the dataset is illustrated. Finally, the
modified estimated MPN method demonstrates its rationality.
The UrbanNav dataset applied in this study uses a Honda
electric car equipped as figure 10 with the following sensors to
collect raw GNSS measurements and other sensor data [43]:

o 3D LiDAR sensor: HDL 32E Velodyne

o Slant LiDARs: VLP16 Velodyne, LsLiDAR C16

o IMU: Xsens Mti, AHRS

e GNSS receivers(x3):

M8T(x1) (1 Hz)

« NovAtel Flexpak6 (1 Hz)

e Camera: ZED2 Stereo (15 Hz)

o precise GNSS receiver: SPAN-CPT

u-blox ZED-F9P(x2), EVK-
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The scatter plot for data (blue) and predictions using HQL (red) and QL (orange) for q=0.99 (a); Training progress plots of % metric for HQL and

Fig. 10. UrbanNav dataset Hardware Setup [43].

The high-precision estimation of the rover receiver from
Novatel SPAN-CPT is regarded as the position ground truth.
Three different scenarios are tested including the Hong Kong
medium urban, deep urban, and harsh urban trips with detailed
descriptions in Table II. In this article, the data from HDL 32E
Velodyne Lidar are regarded as Lidar input, and the data from
ZED?2 stereo camera are image input.

Figure 11 shows the MPN values distribution for the three
trips, respectively, expressed the characteristics of multipath
errors. All three distributions have heavy tails and positive
means, mainly due to NLOS error caused by high buildings in
urban areas. Additionally, the error distributions for the deep
and harsh urban trips resemble Laplace distributions rather
than Gaussian distributions resulting from severe multipath
effects causing the error distribution to be more dispersed. The
Gaussian distribution is defined in terms of the exponential
function of squared difference from the mean, while the
Laplace density is expressed in terms of the exponential
function of absolute difference from the mean. Consequently,
the Laplace distribution has fatter tails than the Gaussian
distribution. The error distribution for the harsh urban trip has
a longer tail than the deep urban trip, likely due to the more
complex urban environment with heavier multipath effects and
more NLOS errors. It is interesting to note that the medium
urban trip is bimodal with a large bias. One possible reason is
that there are fewer GPS satellites with high elevation angles
in the medium urban trip compared with the deep and harsh
urban trips. Another possible reason is that the duration of the
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TABLE I
DATASET DESCRIPTION

Total Size | Path Length | Sensors Urban Canyon
UrbanNav-HK-Medium-Urban-1 | 33.7 GB 3.64 Km LiDARs/Stereo Camera/IMU/GNSS | Medium
UrbanNav-HK-Deep-Urban-1 63.9 GB 4.51 Km LiDARs/Stereo Camera/IMU/GNSS | Deep
UrbanNav-HK-Harsh-Urban-1 147 GB 4.86 Km LiDARs/Stereo Camera/IMU/GNSS | Harsh
012
01 IMedium Urban Trip
Deep Urban Trip
[TTHarsh Urban Trip
0.08—
o)
2 0.06

0.04

0.02

-50 -40 -30 -20

-10 0

Fig. 11.

medium urban trip is shorter than the deep and harsh urban
trips with fewer data.

Figure 12 provides examples of the autocorrelation function
for several satellites in the HK medium urban trip, illustrating
the temporal correlation on MPN. The left part of the figure
displays the changes in MPN over time, while the right part
showcases the autocorrelation function. Additionally, a black
horizontal line representing the exp(—1) value is visible.
The intersection of this black line with the autocorrelation
function indicates the first-order Gauss Markov time constant
[20]. It can be observed that the MPN time constant is over
7 seconds, and when considering all the data the time constant
of MPN is calculated to be 13.54 seconds.

To illustrate the reasonableness of the newly estimated
method in Section II-A, figure 13 shows two sky plots at
epoch 66 in the medium urban trip, with the sky masks
represented by the blue line. The estimated MPN using a
constant covariance matrix is listed in the legend for each
satellite in the left figure, while the right figure displays the
estimated MPN using a varying covariance matrix as described
in Section II-A in the legend. These two figures aim to indicate
the improvement of the modified method in this study.

From the sky plots in figure 13, LOS satellites include
pseudorandom noise (PRN) code = 7 (purple), 8 (green), and
21 (navy), while all other satellites are NLOS satellites. The
left plot shows that the LOS satellites have similar absolute
values of estimated MPN around 60 meters, which cannot be

RSSOy PO NG ISP PR RSN N Sy S R IR I —

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
MPN(m)

GPS satellite multipath errors total distribution in HK medium (blue), deep (red), harsh (green) urban trips.

clearly distinguished from those of NLOS satellites. The right
plot indicates that LOS satellites have minor multipath effects
with much smaller errors. Moreover, the multipath errors with
a constant covariance matrix results in a negative MPN for an
NLOS satellite (PRN = 30), which is inconsistent with reality.
Therefore, the method with a varying covariance matrix is
more reasonable.

C. Modeling Experiments on Three Trips

The part is divided into four stages:

1) Hardware and software specification;

2) Evaluation of the effectiveness and processing speed on
models with various features input;

3) Comparison of the effectiveness between the proposed
LSTM model and the benchmark MLP model used in a
previous study [22];

4) Analysis of conservatism in the above models.

Each experiment is executed five times with five fixed
random seeds to control the random error in the training
process resulting from random initialization of the model’s
parameters and the data shuffling. Furthermore, each trip
dataset is separated into a training set and a testing set in
the ratio of [0.8, 0.2].

1) Hardware and Software Specification: With the hard-
ware and software specifications listed in Table III, the
hardware and software performance is not the best. In practice,
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an autonomous driving system commonly equips up-to-date
hardware and uses C++, Caffe on Linux, rather than MAT-
LAB, which would improve the computational efficiency.

2) Various Feature Types Impact: To evaluate the impact
of various feature types on MPN modeling, experiments were
conducted using the estimated MPN of GPS satellites as the
ground truth and different types of features as input on the HK
medium urban trip. Specifically, the expected probability is set
as ¢ = 0.99 to obtain the predicted quantile of MPN distribu-
tion. In the HK medium urban trip, MPNMLP and MPNLSTM
with time-series lengths v = 5,10, 15, are trained using
different feature inputs: 1. CNO (S); 2. elevation angle (EL);
3. CNO and elevation angle (ELS) 4. GNSS features, including
elevation angle, azimuth angle, CNO (GNSS); 5. GNSS and
point cloud features (G_L); 6. GNSS and image features
(G_C); 7. all multi-sensor features (AMS). The purpose of this
experiment is to analyze the impact of different features and
the effect of time series length on the modeling performance.

Table IV presents the averaged Z results with the medium
urban trip using different features and neural networks. Com-
paring the results using S and EL features, CNO has a stronger
correlation with multipath than elevation angle for all network
models as Z results with CNO input are more immense than
those with elevation angle input. That can be explained by the
fact a satellite with a high elevation angle does not necessarily
imply that the received signals only include direct LOS signals
without reflection and diffraction. For example, an NLOS
signal can have a high elevation angle from satellite A, while
a LOS signal can have a low elevation angle from satellite B
at the same epoch. However, the reflection and diffraction of
signals do affect signal strength. Furthermore, the % results

90°
120 19 60 [ Isky mask
150° 30 30° O prn=1, MPN=114.8311
£ 50 o prn=4, MPN=194.6851
T o0 O prn=7, MPN=0.98145
180° 0> 90 0 O pm=8, MPN=-0.41237
- o\ prn=9, MPN=88.2359
O prn=16, MPN=109.8532
210 m 330c | © Pm=21, MPN=2.2842
O prn=27, MPN=115.0059
240° 300° O prn=30, MPN=9.406
(b)

Estimated MPN with a constant covariance matrix (left) and a varying covariance matrix (right) in the medium urban trip.

with feature ELS are better than single feature inputs of El
and S, and the Z results with GNSS are better than ELS,
suggesting that elevation angle, CNO, and azimuth angle are
all correlated with MPN. Additionally, point cloud features
show a strong correlation with multipath comparing the results
for feature input G_L and GNSS with over 5% improvement.
Camera data is also helpful for modeling multipath errors
by comparing the Z results between G_C and GNSS. It is
observed that G_L obtains better results than AMS for some
cases. One possible explanation is that the AMS could have
excessive features, making it challenging for the neural net-
work to converge to the minimum. The front camera may
contain information irrelevant to modeling. Despite this, the
MPNLSTM_15 with AMS input has the best result. Therefore,
AMS is concluded to be a suitable choice for feature inputs.

Table IV also shows that MPNLSTM has markable
improvements in effectiveness compared with the bench-
mark model (MPNMLP) regardless of the feature inputs. For
instance, the results increase from 0.6345 with MPNMLP
to 0.8313 with MPNLSTM_15 for AMS input. Also, the
result indicates that a longer time series length leads to better
performance. As seen in results obtained with S feature input,
the & values for time-series lengths of 7 = 5,10, 15 are
0.4567, 0.5434 and 0.5728, respectively. The improvement
from 5 to 10 is more evident than from 10 to 15, suggesting
that the improvement declines as the length increases over a
value, especially for S and EL feature inputs. This is consistent
with the fact that the time constant equals 13.54 seconds.
However, using MPNLSTM_05 with S or EL inputs does not
significantly improve compared to the MPNMLP model with
around 0.03 improvement. It is therefore important to choose a
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TABLE III
HARDWARE AND SOFTWARE SPECIFICATION

CPU GPU Operating System | Machine Learning Platform | Programming Language
Intel i7-9700k | Nvidia RTX 2080 | Windows 10 Matlab R2022a Matlab
TABLE IV
2 VALUE RESULTS FOR DIFFERENT INPUT AND DIFFERENT NETWORKS IN MEDIUM URBAN TRIP
Features | g EL ELS | GNSS | GIL | G.C | AMS
Network
MPNMLP 0.4230 | 0.3078 | 0.4657 | 0.5525 | 0.6523 | 0.5992 | 0.6345
Medium Urban Tri MPNLSTM_05(5sec) 0.4567 | 0.3348 | 0.5164 | 0.5810 | 0.6876 | 0.6544 | 0.6696
P MPNLSTM_10(10sec) | 0.5434 | 0.4211 | 0.5723 | 0.6254 | 0.7072 | 0.7035 | 0.7478
MPNLSTM_15(15sec) | 0.5728 | 0.4321 0.6102 | 0.6812 | 0.7410 | 0.7589 | 0.8313
TABLE V
THE PROCESSING SPEED (IN HZ) OF ONBOARD PART FOR REAL-TIME PROCESSING
Speed (Hz) Nemom—reawres | g EL | ELS | GNSS | G.L | G.C | AMS
MPNMLP 40981 63376 | 51710 | 62470 | 2268 1000 1147
Medium Urban Tri MPNLSTM_05(5sec) 22266 | 19628 | 21865 | 21630 | 182 294 230
P MPNLSTM_10(10sec) | 21638 | 21640 | 21993 | 22211 | 286 370 222
MPNLSTM_15(15sec) | 21673 | 23013 | 20822 | 22358 231 270 201
300 300
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Fig. 14. Predicted results using MPNMLP (left) and MPNLSTM_05 (right) using single feature CNO input in HK deep urban trip.
suitable length for modeling. In this study, a time-series length TABLE VI
of 15 seconds is suggested. 2 VALUE RESULTS FOR DIFFERENT TRIPS
Table V presents the processing speed of the onboard Trips Network G.L AMS
. . ; . . . . MPNMLP 0.6523 | 0.6345
component for real-time processing in the medium urban trip. Medium Urban Trip |\ —GreNr ot 151707410 1 0.8313
As the number of features increases, the processing speed . MPNMLP 0.6889 | 0.6994
: : : Deep Urban Trip | —/pRT STV 15 [ 0.7576 | 0.7919
decreases. For a vehicle speed of 40km/h in a metropolitan = : :
area, the slowest processing speed of 201Hz corresponds to a Harsh Urban Trip MIRN 05062 { 0.7
g p g Sp p MPNLSTM_I5 | 0.6986 | 0.7007

movement of 5 centimeters.

3) Comparison Effectiveness Between Designed Model and
Benchmark: In this experiment, the purpose is to compare
the effectiveness of the proposed LSTM model with the
benchmark, MLP model, in [22] in different urban scenar-
ios. Due to the necessity, only the top two input levels in
Section III-C2, G_L and AMS, are selected for experiments,
and the benchmark MPNMLP and the best performance model
MPNLSTM_15 in the medium urban trip are tested in the HK
deep and harsh urban trips to examine the performance of
the LSTM and benchmark on different trips. The expected
probability is still set as ¢ = 0.99.

From Table VI, although the three trips have different MPN
distributions leading to different &% values, the MPNLSTM_15
results are always greater than those with MPNMLP. By using
AMS as input, the effectiveness improves by 31%, 14.5%,
and 16.8% for medium, deep and harsh urban scenarios,

respectively. This consistent outperformance of the LSTM
model over the previous MLP model highlights the signif-
icance of considering temporal correlation when modeling
multipath errors in an urban environment. Furthermore, it is
worth noting that the HK harsh urban trip demonstrates
lower effectiveness compared to the other trips, indicating that
modeling this particular trip is more challenging. This finding
aligns with reality as the HK harsh urban trip involves a more
complex surrounding scenario. It is important to note that the
selected features in [22] have less information compared to the
features used in this article. Consequently, the performance
of the model in [22] may decrease when compared to the
benchmark results presented here.

Figures 14 and 15 provide a visual and intuitive comparison
of the performance of MPNLSTM with MPNMLP in the deep
and harsh trips, respectively, using S and EL input separately.
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Fig. 15. Predicted results using MPNMLP (left) and MPNLSTM_15 (right) using single feature elevation angle input in HK harsh urban trip.
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Fig. 16. plots of CDFs for four models and a Gaussian distribution with different inputs in the medium urban trip. (a) S. (b) EL. (c) ELS. (d) GNSS.

(e) G_L. (f) G_C. (g) AMS.

The red dots on the y-axis represent the quantile value of the
predicted MPN distribution, while the blue dots on the y-axis

represent the ground truth.

The results in figure 14 and 15 reveal that MPNLSTM fits
the data more precisely than MPNMLP, capturing a greater
degree of distributional details. It should be noted that the

MPNLSTM has multiple predicted values for each feature
value since the output from MPNLSTM is determined by both
the current epoch features and the features of previous epochs.
Even if the features at the single epoch are the same, different
predicted values can be obtained by MPNLSTM with varying
features of earlier epochs. This visual representation reinforces
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Fig. 17.
(c) Harsh urban trip.

the notion that the LSTM model is more effective in capturing
the temporal correlation and accurately modeling the multipath
errors in these challenging scenarios.

4) Conservatism Validation: This part is to validate the
conservatism of the above models. The models’ conservatism
is validated by plotting the CDFs. Figures 16 and 17 show
CDF plots from different models and feature inputs for the
three trips. The x-axis represents the normalized multipath
errors; the y-axis is | —CDF (x). When the y-axis is 1 —¢ and
the model’s quantile value is smaller than the quantile of the
standard Gaussian distribution, the model is deemed to bound
the MPN. In figure 16, the CDFs are illustrated with four
different models, including MPNMLP (blue), MPNLSTM_05
(red), MPNLSTM_10 (yellow) and MPNLSTM_15 (purple),
with varying inputs of feature in medium urban trips. The
green line is the standard Gaussian distribution. Figure 17
shows the results for medium, deep, and harsh urban trips
with G_L and AMS feature inputs, respectively.

Figures 16 and 17 demonstrate that all time-series models
can be bounded in the three trips with G_L and AMS feature
input. In contrast, the MPNMLP model can only overbound
multipath errors with G_L and AMS feature input in the
medium urban trip, failing to overbound in the deep urban trip
with G_L feature input and in the harsh urban trip with AMS
feature input. Therefore, time-series models exhibit greater
capability in bounding multipath errors than the MPNMLP
model. Furthermore, the results in figure 17 indicate that the
MPNLSTM_15 can be bound between the standard Gaussian
distribution line and the quantile line, which indicates that
MPNLSTM_15 is better suited for bounding the tail probabil-
ity of MPN after the quantile.

Comparing the results with different feature inputs in
figure 16, LiIDAR and camera data also play essential roles in
overbounding, enabling all models to successfully overbound
multipath errors. Therefore, this study suggests using AMS as
a suitable feature input for a time-series model considering
both the effectiveness and conservatism.

IV. CONCLUSION

A multipath overbounding method under urban environ-
ments is proposed based on long short-term memory (LSTM)
to account for the temporal correlation. To further improve the
performance and shorten the convergence time of the LSTM
network, an optimized quantile loss function is designed.
Experiments are conducted using urban data in Hong Kong

plots of CDFs for three trips on MPNMLP and MPNLSTM model with G_L and AMS feature inputs. (a) Medium urban trip. (b) Deep urban trip.

with feature inputs from LiDAR, camera, and global naviga-
tion satellite systems (GNSS). The experiment results have
demonstrated that LSTM is more suitable for modeling multi-
path errors than the benchmark multi-layer perceptron (MLP)
with improved effectiveness and conservatism. Specifically, the
LSTM network has higher % values than the MLP method
regardless of any feature input based on the test results. The
LSTM network with 15 seconds of time series length using
the feature input from LiDAR, camera, and GNSS is the most
effective model with 0.8313 &% value in the medium urban
trip. Also, the LSTM network can bound the multipath errors
in medium, deep and harsh urban trips conservatively with
the concatenation of GNSS, image and point cloud features,
while MLP can only conservatively bounds medium and deep
urban trips. Also, it is illustrated that features from LiDAR
and camera data are critical for multipath modeling. To ensure
the conservatism of the modeled multipath, this paper suggests
implementing an LSTM model using 15 seconds of sequential
GNSS, image, and point cloud features. The contributions of
this work are threefold. Firstly, the proposed method for over-
bounding multipath errors considers the temporal correlation
of multipath errors, resulting in better performance than the
previous study. Secondly, this study is the first to employ
LiDAR and camera data for overbounding multipath errors.
Lastly, a novel quantile loss function is introduced, which is
more efficient for training the LSTM network than the quantile
regression loss and can be readily applied to other works.

Future work will focus on exploring the trade-off between
computational time and model complexity to facilitate prac-
tical application. The fine-tuned network weights of the
pre-trained backbones may be utilized to extract more relevant
features, and the optimal time-series length for modeling
multipath errors will also be investigated. Additionally, multi-
sensor fusion methods will be deployed to enhance the model’s
performance.

APPENDIX
THE FORMAL DERIVATION OF k

The appendix presents a formal derivation of the zooming
factor k, which ensures the theoretical convergence of the
Huber quantile loss function to the desired quantile. Assuming
a dataset D = {x;, y,-}lN: | containing N samples drawn from
an unknown distribution, a model of the relationship between
x; and y; is expressed as follows:

yi =0(x;) +e€ (19)
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where 6(x) is a function to map the variable x to the space
of variable y, € is random noise from a known distribution.
The goal of maximum likelihood estimation is to find a 6 to
maximize the joint probability, expressed as,
N N
6 =arg;nax(1‘[ P(yilxi, 6))= arg min(- > 1og(p(yilxi. 0)))
i=1 i=1
(20)

Also, the minimization of the QL function is expressed as,

N
0 = argmin(JL2" (3, 0(x))) = argmin(>_ L2"(yi — 0(x))
6 6 i=1

21

Thus, minimizing the QL function is equivalent to the
maximum likelihood estimate of 6 if and only if

0
PG, 0) oc e E0 0100 22)
And we assume that f(y) is the PDF of p(yi|x;,0), F(y)
is the CDF of p(y;|xi, #) and G(y) is the integral of F(y).
Based on (22) and F(—o0) = 1, the f(y), F(y) and G(y)
can be expressed as,

1- q)qe(l—q)(y—a)’ y<a
f(}’) = —q(y—a)
(1 —q)ge 107, y<a
(23)
(I=g)(y—a)
F(y) _ qe . - - y<a
1—(1—gq)qe 1079, y<a
24)
1 zqeu—q)(y—a), y<a
G(y)= 1 1—
9 p=at—a)
ﬂ—l/érl- e +(y—a), y=<a
(25)

where a = 6(x).

In the following derivation, Lemma 1 will be utilized.
This basic result can be obtained based on the knowledge of
indefinite integration, and its proof is omitted here.

Lemma 1: The indefinite integration is illustrated as
[ yfdy = yF(y) — G(y) + C, where C is a constant.

In order to ensure that minimizing the HQL function is
equivalent to minimizing the QL function, an adjusted proba-
bility g; needs to be derived based on ¢ and o. Specifically,
the Huber quantile loss can be expressed as:

T (v, 6(x))

O ay = [ LI - foy

a—o 1
=/ (I—-g)a—y— Eo)dF(y)

a 1 _
+ / By = adF )
a—o o

a+o
+ / Ly~ wdF ()
p o

10939

© 1
+/ qr(y —a — Eo)dF(y)
a+t+o

(26)

. N A )
To minimize the convex loss function, —4———— should

equal to 0. By combining (26) with Lemma 1, it can be derived
that

37, (v, a)
da

a—o a 1 _
= / (1 — gdF(y) + / T @ — y)dF(y)

o0 o

a+o g “+o00
+/ ;(a — dF(y) +/ —qrd F(y)
a a+o

_ 1 — gk
= U= PO+ —aF i,

— Iy F(y) = GONIE_, + BLp(y)ate
o o

= qg—k(ym) — GO — G FOI2

|- -
= —Gla—o0)—L& 4+ Glay(—T& _ 1ty
o o o
+G(a+a)i—k—qk=0 @7)
From (25), G(a) = {L.G(a — o) = Le (1797,

q q
and G(a +0) = ﬁ — é 129 g0 + o can be obtained.
Substituting the above three formulas into (27) yields:

077t (y, a)

da
1— 1—
—_ 9k 4 e~ (=00 q ( qk C]_k)
o l—g¢q l—gqg o o
1 1 1
+ B B B g =0
o l—qg ¢ o q o
(28)
qr can be derived from (28), as follows:
201 — p=U=q)o
(I—e )
a 1 (29)

T P —e 00 4 (1= ) (1 —e99)
Therefore, the zooming factor k can be derived by dividing
both sides of the (29) by g, as follows:

g(1 — e (707)
(1= em1707) (1= g)2(1 — e74°)

k (30)

O
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