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Abstract: This work addresses the motion control problem for a 4-degree-of-freedom unmanned
underwater vehicle (UUV) in the presence of nonlinear dynamics, parametric uncertainties, system
constraints, and time-varying external disturbances. A disturbance observer-based control scheme
is proposed, which is structured around the model predictive control (MPC) method integrated
with an extended active observer (EAOB). Compared to the conventional disturbance observer, the
developed EAOB has the ability to handle both external disturbances and system/measurement
noises simultaneously. The EAOB leverages a combination of sensor measurements and a system
dynamic model to estimate disturbances in real-time, which allows continuous estimation and
compensation of time-varying disturbances back to the controller. The proposed disturbance observer-
based MPC is implemented by feeding the estimated disturbances back into the MPC’s prediction
model, which forms an effective adaptive controller with a parameter-varying model. The proposed
control strategy is validated through simulations in a Gazebo and robot operating system environment.
The results show that the proposed method can effectively reject unpredictable disturbances and
improve the UUV’s control performance.

Keywords: disturbance observer; model predictive control (MPC); dynamic positioning; trajectory
tracking; unmanned underwater vehicle (UUV)

1. Introduction

The continuous development of unmanned underwater vehicles (UUVs) has led to
their increasing utilization in various demanding underwater tasks in recent years. In the
field of offshore infrastructure inspection, UUVs have proven their effectiveness in applica-
tions like inspecting underwater bridge substructures [1] and pipeline inspection [2]. UUVs
also play a significant role in mapping and exploration in extreme environments, such as
mapping the seafloor in ice-covered waters [3], mapping shipwrecks [4], and conducting hy-
perspectral imaging of Arctic macroalgal habitats [5]. Furthermore, specialized UUVs with
unique structures and actuators have been developed for specific underwater operations.
Examples include the addition of a crawling skid to a UUV for underwater maintenance
tasks [6], the development of a prototype UUV for marine-growth removal [7], and the
establishment of an underwater manipulator for delicate repair operations [8]. These ve-
hicles have proven instrumental in replacing humans for hazardous and labor-intensive
underwater work, effectively reducing operational costs and associated risks. Currently,
the primary focus of development is achieving autonomy for underwater vehicles, enabling
them to make decisions and perform tasks without constant human intervention. With a
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higher level of autonomy, UUVs offer several advantages such as the ability to carry out
maritime missions over long distances or in hazardous areas.

The challenges in designing control systems for UUVs arise from their parametric
uncertainties and unpredictable environmental disturbances. Various control strategies
have been applied to UUVs. Proportional–integral–derivative (PID) control is a commonly
used controller in UUV control strategies [9]. One advantage of PID control is its abil-
ity to effectively handle uncertainties in system parameters. Unlike some other control
methods that heavily rely on precise mathematical models, PID control adjusts its control
output based on the current error without explicitly requiring knowledge of the system’s
underlying model. This adaptability enables the PID controller to accommodate variations
and uncertainties in system parameters, ensuring robust performance. Numerous PID
controllers have been developed and implemented for UUVs, such as the fractional-order
PID controller that optimizes parameters with respect to the parameter uncertainties [10],
the adaptive fuzzy nonlinear PID controller that provides robustness against external
disturbances [11], and the intelligent-PID with PD feedforward, which further enhances
stability [12]. Sliding mode control (SMC) becomes a widely used nonlinear control method
in UUV motion control [13], which proves effective in handling systems with uncertainties,
disturbances, and nonlinearities. A dual closed-loop integral SMC method has been de-
veloped for controlling underactuated UUVs [14]. This approach effectively handles the
nonlinear and coupled behaviors of the vehicle, making it suitable for three-dimensional
underactuated scenarios. A sliding mode-based fault tolerant control method integrated
with thrust allocation has also been proposed to reduce the steady error caused by thruster
faults [15]. However, SMC suffers from the chattering problem caused by its discontinuous
control law when the vehicle moves at high speeds, leading to decreased accuracy and
energy loss.

Neural network (NN)-based control methods, as a type of adaptive control technique,
also effectively address parametric uncertainties by learning and adapting to changing
environments or system dynamics. Unlike traditional methods, NN-based control approx-
imates system dynamics using NNs and adjusts network parameters based on data and
feedback. This adaptability enables the control system to handle variations, uncertainties,
and disturbances, enhancing robustness and flexibility. Moreover, NN-based control excels
in managing complex and nonlinear systems by capturing intricate patterns and relation-
ships, ensuring accurate control in highly uncertain scenarios. A hybrid coordination
method that uses reinforcement learning to learn system behavior online was implemented
in an AUV [16]. A robust neural network approximation-based output-feedback tracking
controller has also been proposed to effectively compensate for uncertainties [17]. However,
the system stability of NN-based control methods is often challenging to theoretically
prove. Thus, the validation of the control system typically relies on experimental evidence.
Furthermore, the effectiveness of the neural network adaptive controller relies significantly
on the number of neural network nodes, leading to a substantial computational burden
that hinders its practical implementation in engineering applications.

Disturbance observer-based control (DOBC) is a control technique that aims to address
the challenges posed by environmental disturbances in a control system. It involves the esti-
mation and compensation of disturbances to improve the system’s overall performance and
robustness. In contrast to other approaches that deal with disturbances by designing robust
controllers, as mentioned earlier, DOBC ensures that the performance of the outer-loop
controller is not degraded when disturbances are estimated in the inner loop. A nonlinear
disturbance observer (NDO) was designed and incorporated into a nonsingular fast termi-
nal sliding mode control scheme for trajectory tracking of an under-actuated UUV [18]. This
incorporation guarantees finite-time convergence and demonstrates improved immunity
to external disturbances. An implementation of a disturbance observer has been incor-
porated into fuzzy adapted S-Surface control to improve robustness against unmodeled
disturbances [19]. A study conducted in 2019 introduced a modified constrained controller
that combines a computed-torque controller (CTC) with a newly designed NDO for im-



J. Mar. Sci. Eng. 2024, 12, 94 3 of 30

proved performance [20]. This modified controller enhances the accuracy of disturbance
compensation by optimizing the evaluation function of the conventional H∞ controller. Ad-
ditionally, it incorporates considerations for control input constraints within the evaluation
function. To enhance resilience against external disturbances and model uncertainties, an
adaptive disturbance observer that combines the extended state observer (ESO) technique
and high-order SMC was developed [21]. This adaptive disturbance observer was inte-
grated with backstepping and nonlinear PD controllers to enhance control performance. Its
efficacy was confirmed through rigorous validation in multiple experimental scenarios.

Although the methods mentioned earlier are capable of mitigating external distur-
bances and unmodeled uncertainty to a certain degree, they possess certain limitations.
In the case of DOBC methods, most of them have the assumption of zero measurement
noise, which is unrealistic in practical marine robotic systems. On the other hand, control
methods such as SMC and NN-based adaptive control can address measurement noise, but
they introduce issues of their own, such as chattering and high computational complexity.
Furthermore, when designing a viable control system for UUVs, it is essential to account
for system input and state constraints.

Model predictive control (MPC) is a control strategy that involves solving an optimal
control problem (OCP) with a finite horizon recursively to determine the control action.
This approach ensures that the system constraints are consistently considered throughout
the control process [22]. As a result, MPC has gained significant interest in marine robotics
due to its capability to handle control limits, control variation bounds, and state constraints.
The application of MPC to marine vessels for dynamic positioning was demonstrated in [23].
The study showed that implementing MPC allows for the distribution of force generation
over a specific time period and enables the planning of vessel motion based on the varying
configuration of the rotatable thrusters. Nonlinear model predictive control (NMPC) has
also been developed to enable an AUV to follow predefined trajectories in the water
column [24], showcasing the potential for real-time MPC control with in situ estimated
water current profiles. Furthermore, a Lyapunov-based MPC has emerged in recent years
to ensure closed-loop stability [25]. The robustness of NMPC for UUV motion control
has been experimentally validated in a water tank capable of generating directional ocean
currents [26]. These MPC-based studies have effectively demonstrated the advantages
of using MPC in UUV motion control through numerical simulations and experiments.
Recently, MPC based on the active disturbance rejection control (ADRC) was also proposed
for motion control of an AUV [27]. This method incorporates a discrete extended state
observer to estimate disturbances and applies feedback control to compensate for them.
By combining the strengths of MPC and DOBC, the controller can effectively handle
parametric uncertainties and external disturbances in the inner loop. Meanwhile, MPC can
address system constraints in the outer loop. Therefore, by further developing a suitable
disturbance observer that is robust against measurement noise, a feasible and efficient
control system for UUVs can be ensured.

Motivated by the aforementioned considerations, an extended active observer (EAOB)
is developed using the extended Kalman Filter (EKF) to integrate with MPC and form the
disturbance observer-based MPC (DOBMPC) in this work. The significant contribution
of the designed EAOB lies in its capability to estimate disturbances in the presence of
measurement noise. Additionally, the unmodeled parameter in the MPC’s prediction model
is considered part of the disturbance term, effectively addressing the issue of parametric
uncertainty. Unlike the conventional approach of compensating estimated disturbances
into control inputs, the estimated disturbances are incorporated into the MPC’s prediction
model and updated at each time step. This allows the MPC to generate an optimal control
law while taking disturbances into account. The proposed control method aims to achieve
the following objectives:
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1. The proposed EAOB demonstrates the capacity to effectively estimate disturbances
in the presence of measurement noise. This is a notable improvement compared to
previous literature, where the assumption of no measurement noise was prevalent,
with only a limited number of papers addressing this crucial aspect.

2. The proposed approach represents a significant advancement in compensating for
disturbances by integrating real-time disturbance estimation into the prediction model
of the MPC at each time step. This results in a parameter-varying model, surpassing
previous methods that simply added estimated disturbances to the baseline control
input. By employing this enhanced approach, more precise and adaptive control can
be achieved, marking a notable improvement over previous compensation methods.

3. In this work, the estimated disturbances are explicitly taken into account within the
prediction horizon of the MPC framework. This enables the generation of optimal
control inputs that effectively reject disturbances, surpassing previous related works
that may not have explicitly considered disturbances within the optimization process.
By incorporating the estimated disturbances throughout the MPC’s prediction horizon,
this approach ensures the provision of control actions that account for the presence
of disturbances.

The structure of the paper is outlined as follows. Section 2 describes the dynamic
model of the UUV. Section 3 explains the design of the proposed EAOB. Section 4 covers
the implementation of the entire DOBMPC system. Section 5 showcases and discusses
the results obtained from employing the proposed DOBMPC for dynamic positioning
and trajectory tracking. Lastly, Section 6 summarizes the research work and outlines
future directions.

2. Problem Formulation

In this research work, we selected BlueROV2 [28] which has 4 degrees of freedom
as the UUV platform. Its motion encompasses surge, sway, heave, and yaw. Fossen’s
theory [29] is employed to model the motion of UUV, which includes rigid body, added
mass, and damping. This section provides detailed explanations of the kinematic and
kinetic equations governing UUV motion. These equations serve as the foundation for
establishing a system model for motion control. The notations of parameters obtained in
the UUV dynamic model are summarized in Table 1.

Table 1. Notations in the UUV dynamic model.

Surge Sway Heave Roll Pitch Yaw

Position η x y z (m ) ϕ θ ψ (rad)
Velocity v u v w (m/s) p q r (rad/s)
Forces and Moments τ X Y Z (N) K M N (Nm)
Control Inputs u u1 u2 u3 (N) / / u4 (Nm)
Disturbances w Xw Yw Zw (N) Kw Mw Nw (Nm)
Measured Disturbances w Xw Yw Zw (N) / / Nw (Nm)
Unmeasured Disturbances w / / / Kw Mw / (Nm)
Added Mass Xu̇ Yv̇ Zẇ (kg) K ṗ Mq̇ Nṙ (kgm2/rad)
Linear Damping Xu Yv Zw (Ns/m) Kp Mq Nr (Ns/rad)
Nonlinear Damping Xu|u| Yv|v| Zw|w| (Ns2/m2) Kp|p| Mq|q| Nr|r| (Ns2/rad2)
Feedback Variables x y z (m) ϕ θ ψ (rad)

u v w (m/s) p q r (rad/s)
X Y Z (N) / / Nw (Nm)

2.1. Kinematic Model

The UUV’s motion states are described using two reference frames: the body-fixed
reference frame (BRF) and the inertial reference frame (IRF). The BRF is fixed to the vehicle,
with the center of gravity serving as the origin, and the body axes aligned with the principal
axes of inertia. The longitudinal axis, denoted as the xb, extends from aft to fore. The
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transversal axis, referred to as the yb, extends from port to starboard. Per the right-hand rule,
the zb axis is perpendicular to both the xb and yb axes. The UUV’s motion is characterized
as the motion of the BRF relative to the IRF. The IRF is employed to track the vehicle’s
trajectory and define the control objectives. In this work, the IRF is aligned with the
north-east-down (NED) coordinate system. This choice is motivated by the prevalence of
expressing position vectors in NED coordinates within various navigation applications
and simulation environments. The axes in IRF are denoted as xi, yi, and zi, as shown in
Figure 1.

Figure 1. The reference frames of the UUV.

In the UUV’s model states, the linear and angular velocities are described in the BRF
as v = [u, v, w, p, q, r]T, while the linear and angular position are expressed in the IRF as
η = [x, y, z, ϕ, θ, ψ]T. Since the velocity vector and position vector are expressed in different
reference frames, the rotation matrix Ri

b are required for describing the relationship between
them. Let vb = [u, v, w]T represent the linear velocity in BRF, and vi represents the linear
velocity in IRF. Based on [30], the vb and vi can be related by equation:

vi = Ri
b(Θ)vb (1)

where Θ includes the Euler angles (roll ϕ, pitch θ and yaw ψ). Then the rotation matrix can
be computed based on Θ as:

Ri
b(Θ) =

 cosψcosθ cosψsinθsinϕ − sinψcosϕ cosψcosθsinϕ + sinψsinϕ
sinψcosθ sinψsinθcosϕ + cosψcosϕ sinψsinθcosϕ − cosψsinϕ
−sinθ cosθsinϕ cosθcosϕ

. (2)

For the transformation of angular states, let ωb = [p, q, r]T represents angular velocity
in the BRF relative to the IRF then:

Θ̇ = T(Θ)ωb (3)

where Θ̇ = [ϕ̇, θ̇, ψ̇] is the Euler angle rate. The transformation matrix T(Θ) which repre-
sents the relationship between angular states in the BRF and IRF can be expressed as:

T(Θ) =

 1 sinϕtanθ cosϕtanθ
0 cosϕ −sinϕ
0 sinϕ/cosθ cosϕ/cosθ

. (4)

Therefore, the relationship between UUV’s velocity and position is given by:

η̇ =

[
ṗ
Θ̇

]
=

[
Ri

b(Θ) 03×3
03×3 T(Θ)

][
vb

ωb

]
= J(η)v (5)
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J(η) =
[

Ri
b(Θ) 03×3

03×3 T(η)

]
(6)

where p = [x, y, z]T represents the linear position of UUV in the IRF.

2.2. Kinetic Model

To simplify the process of deriving the dynamic equations for UUV motion, it is
common to assume that the vehicle behaves as a rigid body. This assumption eliminates the
need to analyze the interactions between individual mass elements. The overall dynamic
model can be expressed as follows:

Mv̇ + C(v)v + D(v)v + g(η) = τ + w (7)

where Mv̇ is the mass matrix, C(v)v is the Coriolis and centripetal matrix, D(v)v is the
hydrodynamic damping matrix, g(η) is the vector of the gravitational and buoyancy forces,
the τ = [X, Y, Z, K, M, N]T is the total propulsion forces and moments, and w is the external
disturbance. The M and C(v)v contain terms for both the rigid body and hydrodynamic
added mass as: {

M = MRB + MA
C(v) = CRB(v) + CA(v).

(8)

2.2.1. Rigid-Body Dynamics

By using Newtonian physics, the rigid-body dynamics of the UUV may be deduced
as follows:

MRBv̇ + CRB(v)v = τRB. (9)

Assuming that the origin of the BRF is positioned at the geometric center of the UUV
and the vehicle exhibits symmetry in both the port–starboard and fore–aft plane, the
rigid-body mass matrix can be simplified. As a result, the rigid-body mass MRB can be
expressed as:

MRB =



m 0 0 0 mzg 0
0 m 0 −mzg 0 0
0 0 m 0 0 0
0 −mzg 0 Ix 0 0

mzg 0 0 0 Iy 0
0 0 0 0 0 Iz

 (10)

where m is the mass of the vehicle, Ix, Iy and Iz are the inertia moments about the xb, yb,
and zb axes in BRF, measured in kgm2; zg is the position of the CG in relation to the centre
of the vehicle in zb axis, measured in meters. Subsequently, using the skew-symmetric
cross-product operation on MRB yields the result of the rigid-body Coriolis and centripetal
matrix CRB(v) is given by:

CRB(v) =



0 0 0 0 mw −mv
0 0 0 −mw 0 mu
0 0 0 mv −mu 0
0 mw −mv 0 Izr −Iyq

−mw 0 mu −Izr 0 Ix p
mv −mu 0 Iyq −Ix p 0

 (11)

2.2.2. Hydrodynamics

The hydrodynamics studied in this work encompass both hydrodynamic added mass
and hydrodynamic damping. Hydrodynamic added mass can be perceived as a virtual
mass that is introduced to a system when a body accelerates or decelerates, requiring the
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movement of a certain volume of the surrounding fluid. This concept is formulated based
on Kirchhoff’s equation.

In an ideal fluid, for a rigid body that is either at rest or moving at a forward speed
U ⩾ 0, the hydrodynamic system inertia matrix MA is positive semi-definite. The hydrody-
namic coefficients are defined as the partial derivatives of the added mass force with respect
to the corresponding acceleration. In many practical applications, the nondiagonal elements
of MA are significantly smaller than the diagonal elements. As a result, the off-diagonal
terms of MA can be disregarded, leading to a simplified form of MA as follows:

MA = −



Xu̇ 0 0 0 0 0
0 Yv̇ 0 0 0 0
0 0 Zẇ 0 0 0
0 0 0 K ṗ 0 0
0 0 0 0 Mq̇ 0
0 0 0 0 0 Nṙ

 (12)

Accordingly, the nonlinear hydrodynamic Coriolis and centripetal matrix CA(v) can
be calculated as:

CA(v) =



0 0 0 0 zẇw Yv̇v
0 0 0 −zẇw 0 −Xu̇u
0 0 0 −Yv̇v Xu̇u 0
0 −zẇw Yv̇v 0 −Nṙr Mq̇q

zẇw 0 −Xu̇u Nṙr 0 −K ṗ p
−Yv̇v Xu̇u 0 −Mq̇q K ṗ p 0

 (13)

The primary components of hydrodynamic damping for UUVs are potential damping,
skin friction, wave drift damping, and damping caused by vortex shedding. Typically,
potential damping and wave drift damping are disregarded in UUVs model. These various
damping factors contribute to both linear and quadratic damping, as follows:

D(v) = DL + DNL(v) (14)

The linear damping term (DL) is a result of skin friction, while the nonlinear damping
matrix (DNL) is caused by quadratic damping and higher-order terms. Due to decoupling,
the damping matrix is derived to be diagonal. As a result, the linear damping matrix
is represented by Equation (15), and the quadratic damping matrix is represented by
Equation (16).

DL = −diag
[
Xu, Yv, Zw, Kp, Mq, Nr

]
(15)

DNL(v) = −diag
[

Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p||p|, Mq|q||q|, Nr|r||r|
]
. (16)

2.2.3. Hydrostatics

Archimedes [31] established the foundational principles of fluid statics, which form
the basis of hydrostatics today. Considering the mass of the UUV as m measured in kg,
acceleration due to gravity as g, water density as ρ measured in kg/m3, and the volume of
fluid displaced by the UUV as ∇ measured in m3. Therefore, the weight of the UUV can be
expressed as W = mg, while the buoyancy force B is expressed as B = ρg∇.

Given the center of buoyancy of the UUV is rb, assume the centre of the vehicle’s
body frame is placed at the center of buoyancy (CB), then rb = [0, 0, 0]T . Since the vehicle
has symmetry in the xz-plane and xy-plane, the position of the CG of the vehicle rg
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becomes rg =
[
xg, yg, zg

]T
=

[
0, 0, zg

]T . Thus, the overall restoring force vector g(η) can
be calculated using Euler angle transformation as:

g(η) =



(W − B) sin θ
−(W − B) cos θ sin ϕ
−(W − B) cos θ cos ϕ

zgW cos θ sin ϕ
zgW sin θ

0

. (17)

2.2.4. Propeller Model and Control Allocation

A realistic model of the propeller is taken into account in the dynamic model of the
UUV. The control inputs, denoted as u = [u1, u2, u3, u4]

T, where u1, u2, u3, u4 correspond
to the forces and moments in the surge, sway, heave, and yaw directions of the UUV,
respectively. The BlueROV2 is equipped with six propellers to facilitate movement in
4 degrees of freedom, resulting in an over-actuation scenario. Hence, the control inputs
u are allocated to each propeller using the control allocation matrix. The thrust vector,
represented as t = [t1, t2, t3, t4, t5, t6]

T, is determined as follows:

t = Au =



−1 1 0 1
−1 −1 0 −1

1 1 0 −1
1 −1 0 1
0 0 −1 0
0 0 −1 0

u (18)

where t is the thrust produced by all propellers, and the layout of six propellers is shown in
Figure 2. The blue propellers rotate clockwise, the green propellers rotate counterclockwise,
and the red arrow indicates the positive surge direction.

Figure 2. The propeller configuration of the BlueROV2, propeller 1, 2, 3, and 4 provide thrust in x-y
plane, while propeller 5 and 6 provide thrust in vertical direction [32].

The propulsion matrix, denoted as K, is utilized to calculate the combined force and
moment that propel the UUV. This matrix represents the spatial distribution of propellers
on the BlueROV2’s structure:

τ = Kt. (19)

For calculating the propulsion matrix, given that lxi is the distance between the centre
of propeller i and the CG in xb direction, and txi is the force projection to x direction;
therefore, the forces and moments produced by propeller 1 are:
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τ1 =



tx1
ty1
tz1

tz1ly1 − ty1lz1
tx1lz1 − tz1lx1
ty1lx1 − tx1ly1

 =



t1 cos α
−t1 sin α

0
t1 sin α · lz1
t1 cos α · lz1

t1
(
− sin α · lx1 − cos α · ly1

)



=



cos α
− sin α

0
sin α · lz1
cos α · lz1

− sin α · lx1 − cos α · ly1

t1

(20)

where α denotes the angle at which the propeller is positioned with respect to the UUV’s
forward direction, measured in radians. Using the value α = π/4 rad and lx1 = 0.156 m,
ly1 = 0.111 m, lz1 = 0.072 m for propeller 1. Therefore, the first column in K can be obtained.
The rest column can be calculated in the same way, thus the propulsion matrix becomes:

K =



0.707 0.707 −0.707 −0.707 0 0
−0.707 0.707 −0.707 0.707 0 0

0 0 0 0 1 1
0.051 −0.051 0.051 −0.051 0.111 −0.111
0.051 0.051 −0.051 −0.051 0.002 −0.002
−0.167 0.167 0.175 −0.175 0 0

. (21)

2.2.5. Nonlinear Model

In summary, for achieving motion control of the UUV, the system state is defined as
x = [η; v]. From the Equations (5) and (7), the general form of the UUV is obtained as:

ẋ =

[
η̇
v̇

]
= f (x, τ, w, t)

=

[
J(η)v

M−1[τ + w − C(v)v − D(v)v − g(η)]

]
.

(22)

3. Extended Active Observer

When designing control systems, it is often customary to apply the principle of su-
perposition when accounting for wave τwave and current disturbance τcurrent [29]. The
disturbance term also encompasses unmodeled dynamics ∆τ, such as uncertainties related
to rigid-body parameters (e.g., inertia and mass properties) and hydrodynamic parameters
(e.g., hydrodynamic damping force) that are challenging to accurately identify. This princi-
ple implies that all sources of disturbances are combined and included on the right-hand
side of Equation (22) as the disturbance term w = [Xw, Yw, Zw, Kw, Mw, Nw]T ,

w = τwave + τcurrent+∆τ. (23)

Assumption 1. It is assumed that the disturbance caused by ocean waves (τwave) and currents
(τcurrent), as well as the uncertainty in unmodeled dynamics (∆τ), are bounded, specifically by
∥τwave∥ ≤ τ1, ∥τcurrent∥ ≤ τ2, ∥∆τ∥ ≤ τ3. τ1, τ2, and τ3 are unknown positive constants
to be estimated. As a result, the total disturbance w is bounded by the sum of these limits, i.e.,
∥w∥ ≤ τ1 + τ2 + τ3.
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Assumption 2. It is assumed that the total disturbance w is slow time-varying signal.
Therefore, the internal disturbance model can be constructed as:{

w = Mv̇ + C(v)v + D(v)v + g(η)− τ
ẇ = 0.

(24)

3.1. Observer Design

For using EKF to construct a disturbance observer to compensate for the unpredictable
uncertainties, the disturbance term w is considered as system states along with the position
η and velocity v.

In real-world scenarios, it is common for the system being modeled to exhibit continuous-
time dynamics, while measurements are obtained at discrete time intervals. To address this
problem, the continuous–discrete EKF (CD-EKF) is employed for constructing the EAOB.
The CD-EKF incorporates both continuous and discrete dynamics into the estimation
process, operating similarly to the standard EKF but with the additional capability of
handling discrete dynamics. The continuous dynamics are typically described using
differential equations, while the discrete dynamics are represented by difference equations.
During the prediction step of the CD-EKF, the continuous dynamics are discretized by
integrating forward in time using numerical integration techniques, effectively capturing
the system’s continuous evolution between measurement updates. In the update step,
the CD-EKF incorporates the discrete-time measurements to correct and refine the state
estimate. By seamlessly combining both continuous and discrete dynamics within the
estimation process, the CD-EKF offers improved accuracy and robustness in estimating
the state variables of systems with mixed dynamics. Therefore, the system process is
represented as a continuous-time model, while the discrete-time measurements are taken.
The system process model can be reconstructed as:

ẋ(t) = f (x(t), τ(t), w(t)) + W(t) W(t) ∼ N (0, Q(t)). (25)

where system state x = [ηT vT wT ]T , W(t) refers to the process noise that is assumed to be
zero mean Gaussian noise with covariance Q(t), f (·) refers to the nonlinear system process
model, and t represents time in continuous form. Therefore, all the functions in the system
process model are defined in continuous time.

Therefore, the system process model can be formulated based on the UUV’s model in
Equation (22):

f (x, τ, w) =

 J(η)v
(M)−1[τ + w − C(v)v − D(v)v − g(η)]

ẇ

 (26)

The measurement states contain the position η, velocity v, and propulsion forces and
moments τ, thus the discrete-time measurement model is formulated as:

zk = h(xk) + Vk Vk ∼ N (0, Rk) (27)

where measurement states z = [ηT vT τT ]T , Vk is the measurement noise which is assumed
to be zero mean Gaussian noise with covariance Rk, h(·) refers to the nonlinear measure-
ment model that relates the system states to the measurements obtained from sensors, and
k denotes time in discrete form. Thus, all the functions in the measurement model are
defined in discrete time. The first 12 terms of the measurement model are identity to the
system process model, and the τ can be calculated based on disturbance term w as:

τ = Mv̇ + C(v)v + D(v)v + g(η)− w. (28)

The accurate estimation of solutions heavily relies on the design of the noise covariance
matrices for the system process Q(t) and measurements Rk. One approach to constructing
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Q(t) is by utilizing the piecewise white noise model (PWNN). This stochastic model allows
for the representation of varying noise characteristics across different time intervals or
regions. By incorporating PWNN, the time-varying dynamics of the system can be more
precisely captured in the EKF. This is particularly beneficial when dealing with systems
that exhibit nonstationary or changing noise characteristics. The equation for calculating
the system process noise covariance Q(t) based on PWNN is as follows:

Q(t) = E
[
ΓW(t)W(t)Γ⊤

]
= Γσ2Γ⊤. (29)

where Γ = [∆t2/2, ∆t, ∆t]T is the noise gain of the system, ∆t is the sampling time step, and
σ2 represents the variance of the white noise process. The covariance of the measurement
noise Rk is also dependent on the sampling time step ∆t, which is defined as:

Rk = diag[∆t, ∆t, ∆t]. (30)

The matrix Q(t) is used to model the uncertainty and variability in the system dy-
namics. By adjusting the Q(t), it can control the level of confidence the observer has in the
predicted state estimates. Meanwhile, the matrix Rk captures the uncertainty associated
with the sensor measurements. Consequently, the tuning of Q(t) and Rk determines the
weighting between the system model and the measurements. As the current work is being
conducted in simulation, where higher measurement accuracy is present, further adjusting
Rk allows for greater reliance on measurements:

Rk = diag[∆t2/2, ∆t2/2, ∆t2/2]. (31)

To adapt the real-world implementation, the matrix Rk can be further fine-tuned ac-
cording to the specific sensors employed. For instance, the accelerometer and gyroscope
are commonly employed for state measurement, but they often introduce unavoidable
noise into the measurements. Consequently, in such cases, it is crucial to carefully deter-
mine the measurement noise matrix Rk. Numerous studies have been conducted in this
area. In 2021, an experimental approach was proposed to analyze the impact of different
weightings of matrix Q(t) and Rk on state estimation derived from the accelerometer and
gyroscope [33]. In addition, a study also developed a dynamic noise model for adaptive
filtering of the gyroscope [34]. This work introduced the dynamic Allan variance, which
utilized a novel truncation window based on entropy features to construct the noise model.
Additionally, an adaptive Kalman filter was designed to accommodate practical system
and computational environments. Furthermore, a disturbance observer with adaptation
laws has been developed based on the generalized super-twisting algorithm [21]. This
allows the observer to be auto-tuned, improving robustness to both external disturbances
and model uncertainties.

The system process model f (x, τ, w) and the measurement model h(x) can be lin-
earized by taking the partial derivatives of each to evaluate the state transition matrix F
and the measurement matrix H at each operating point with Jacobian matrix. Equation (32)
provides the state transition matrix F that captures the connection between the current
state and the subsequent predicted state in a dynamic system. This matrix is derived
using continuous-time t as a basis. The measurement matrix, denoted as H, establishes the
connection between sensor measurements and the predicted system state, as expressed in
Equation (33), with consideration for discrete-time k.

F(t) =
∂ f
∂x

∣∣∣∣
x̂(t),τ(t),w(t)

(32)

Hk =
∂h
∂x

∣∣∣∣
x̂k|k−1

(33)
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Denote the three elements in the second row of matrix F(t) as F21(t), F22(t), and F23(t).
Therefore

F21(t) = −M−1
(

∂M
∂η̂

˙̂v +
∂C(v̂)v̂

∂η̂
+

∂D(v̂)v̂
∂η̂

+
∂g(η̂)

∂η̂

)
,

F22(t) = −M−1(
∂C(v̂)v̂

∂v̂
+

∂D(v̂)v̂
∂v̂

),

F23(t) = M−1.

(34)

The CD-EKF is a recursive estimation algorithm, where the main procedure can be
divided into prediction and update parts. Before starting the recursion, an initialization
step is performed based on the first measurement:

x̂(t0) = E[x(t0)], P(t0) = Var[x(t0)]. (35)

In the prediction part, it predicts the state estimate x̂k|k−1 = x̂(tk) based on the previous
state estimate and the system dynamics. Then the error covariance matrix Pk|k−1 = P(tk)
can be calculated based on the state transition matrix F. The prediction part is shown
as follows:

solve
{ ˙̂x(rt) = f (x̂(t), τ(t))

Ṗ(t) = F(t)P(t) + P(t)F(t)T + Q(t)

with
{

x̂(tk−1) = x̂k−1|k−1
P(tk−1) = Pk−1|k−1

⇒
{

x̂k|k−1 = x̂(tk)

Pk|k−1 = P(tk)

(36)

The prediction step consists of both continuous-time and discrete-time components.
The first equation, ˙̂x(t) = f (x̂(t), τ(t)), represents the continuous-time dynamics of the
system. It describes how the estimated state x̂ evolves over time based on the current
estimated state and the total propulsion force and moments τ. The second equation,
Ṗ(t) = F(t)P(t) + P(t)F(t)T + Q(t), represents the continuous-time evolution of the error
covariance matrix P. It captures how the uncertainty in the estimated state evolves over
time, taking into account the system’s dynamics represented by the matrix F and the
process noise covariance matrix Q. The discretization occurs implicitly between the time
steps tk−1 and tk. The initial conditions for the discrete-time updates are set based on the
estimated state and error covariance matrix at time tk−1, denoted by x̂k−1|k−1 and Pk−1|k−1,
respectively. These initial values are then used to compute the updated estimates x̂k|k−1
and Pk|k−1 at time tk.

Therefore, in Equation (36), a numerical integration method should be applied for the
discretization of a continuous-time system process model. Various ways of discretization
in EKF have been discussed [35]. In this work, the continuous dynamics of the system are
approximated using a deterministic integration scheme. This scheme yields a deterministic
estimation of the system’s behavior between measurement updates, assuming no uncertainty
or stochasticity in the system dynamics. Deterministic integration methods are preferred
due to their computational efficiency, avoiding the computational burden associated with
simulating random processes. Specifically, the fourth-order Runge–Kutta (RK4) method [36]
is selected for its superior accuracy and stability compared to lower-order integration
methods like Euler’s method or the second-order Runge–Kutta method. The RK4 method
achieves this by evaluating the system dynamics at multiple intermediate points during
each integration step, resulting in a more precise estimation of the state variables.

In the update part, it calculates the measurement residual ŷk|k with current measure-
ments z(k) and measurement model. Then the Kalman Gain Kk at time k can be determined
based in the predicted error covariance matrix Pk|k−1 and linearized measurement matrix
Hk. Finally, it updates the state estimate x̂k|k based on the predicted state estimate x̂k|k−1
and the Kalman Gain Kk, and recalculate the error covariance matrix Pk|k based on Kalman
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Gain Kk and the linearized measurement model Hk. The following equations express the
procedure in EKF’s update part

ŷk|k =
(

zk − h
(

x̂k|k−1

))
Kk = Pk|k−1HT

k

(
HkPk|k−1HT

k + Rk

)−1

x̂k|k = x̂k|k−1 + Kkŷk|k

Pk|k = (I − Kk Hk)Pk|k−1.

(37)

The equation in the EKF update part is formulated in discrete time. The time step
at which the equation is evaluated is denoted by k. The notation k | k signifies that the
variable or state being considered is at time step k. On the other hand, k | k − 1 refers to
the estimation or prediction at time step k based on the information available up to the
previous time step, which is k − 1.

3.2. Stability Analysis

The system process model Equation (26) can be extended as:

ẋ = f (x, τ, w) + Gξx

=

 J(η)v
(M)−1[τ + w − C(v)v − D(v)v − g(η)]

ẇ

+ G

 ξη

ξv
ξw

,

Y = HX + Vk

(38)

where Y is the output of the system, G is a unit matrix, ξη, ξv and ξw represent the process
noises of system states [ηT vT wT ]T , respectively.

Therefore, in the above observer design process as Equation (37), the state estimate ˙̂x
is formulated as:

˙̂x = f (x, τ, w) + PHT(HPHT + R)−1(Y − Hx̂), (39)

where

Ṗ =
∂ f
∂x̂

P + P
∂ f T

∂x̂
+ GQGT − PHT(HPHT + R)−1HP. (40)

The stability of using the EKF for force estimation has been demonstrated in [37].
Accordingly, the stability analysis of the proposed EAOB method can be conducted using
two theorems.

Theorem 1. The proposed EAOB for the system described in Equation (22) is locally stable,
given that

1. α1 I ≤ ∥Q(t)∥ ≤ α2 I,
2. α3 I ≤ ∥Rk∥ ≤ α4 I.
3. Then the following is true:

α5 I ≤
∫ t+σ

t
F23(τ)

T F23(τ)dτ ≤ α6 I (41)

where F23(τ) in Equation (34) is bounded based on Assumption 1, and α1−6 are positive constants.

Theorem 2. Assume that the model of a linearized system is as follows:

1. uniformly completely observable;
2. uniformly completely controllable;
3. α1 I ≤ ∥Q(t)∥ ≤ α2 I;
4. α3 I ≤ ∥Rk∥ ≤ α4 I/;
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5. ∥F(t)∥ ≤ α5, ∥G(t)∥ ≤ α6, ∥Hk∥ ≤ α7.

Then the following equation, which is derived from Equation (37), is true:

˙̂x = Fx̂ + PHT(HPHT + R)−1Hx̃,

˙̃x =
[

F − PHT(HPHT + R)−1H
]

x̃,
(42)

is uniformly asymptotically stable based on [38], where x̃ = x − x̂ is the unforced optimal filter.

As per Theorem 2, it is necessary to linearize the nonlinear dynamic system. The
linearized system can be constructed with Equations (32) and (33) as follows:

ẋ = F(t)x + Gξx,
z = HX + Vk.

(43)

To ensure the stability of the EAOB, certain conditions must be met. Firstly, the
linearized system must be fully observable, which can be achieved by satisfying conditions
2 and 3 in Theorem 1. Secondly, the linearized system must be fully controllable, which can
be accomplished by meeting condition 1 in Theorem 1. Finally, stability can be achieved by
utilizing the outcomes of Theorem 2.

4. Disturbance Observer-Based Model Predictive Control (DOBMPC)

MPC is a model-based control strategy, which determines the control action by recur-
sively solving OCPs and respects the system constraints during the control, as shown in
Figure 3.

Figure 3. Control loop of the MPC, which mainly includes an optimizer and a prediction model.

In the MPC control loop, it receives reference states, system constraints, and measure-
ment states from the dynamic system, and outputs the control inputs back to the system.
The MPC calculates the predicted outputs based on the prediction model with a sequence of
control inputs over a certain horizon, and the optimizer solves the quadratic programming
(QP) problem as:

min
U,X

∫ T

t=0

∥∥∥h(x(t), u(t))− yre f

∥∥∥2

Q
dt +

∥∥∥h(x(T))− yN,re f

∥∥∥2

QN

subject to ẋ = f (x(t), u(t));

u(t) ∈ U
x(t) ∈ X
x(0) = x(t0)

(44)

where u(t) and x(t) represent control inputs and system states at time t; T is the prediction
horizon which refers to the number of time steps to look forward; yre f and yN,re f are the
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stage reference states in the prediction horizon and the terminal reference states, respec-
tively; Q and QN are the weighting matrics for stage states and terminal states; f (·) and
h(·) are the prediction model and system output functions; and U and X are constraints in
control inputs and system states.

When designing a real-world system, it is important to consider the input constraints
based on the physical limits of the actuator being used. In this case, the control inputs u are
bounded, as |u1| ≤ fmax, |u2| ≤ fmax, |u3| ≤ fmax, |u4| ≤ Mmax. fmax and Mmax represent
the maximum allowed force and moment limits, respectively. The fmax and Mmax are
determined based on the propeller thrust force datasheet in [26]. In this study, the MPC also
takes system constraints into account. The vehicle’s linear velocity is limited as

∣∣∣vb
∣∣∣ ≤ vmax.

Here, vmax represents the maximum linear velocity. The vmax is determined based on the
system’s specification in [28], while vmax = 1.5 m/s. To ensure that the constraints are
taken into account during optimization and further assure control feasibility, the input
constraints are written into U, while the system constraints are written into X in the cost
function in Equation (44).

To tune the MPC, there are several important steps to follow. First, the prediction
horizon T is selected, taking into account the trade-off between control performance
and computational burden. To find an optimal value that balances these factors, the
horizon is incrementally increased during simulations and evaluated for improved control
performance while maintaining the real-time operation of the MPC. Additionally, MPC
allows for the prioritization of multiple control objectives by assigning weighting factors in
the matrix Q to each objective. In this particular work, the yaw angle ψ is given the highest
priority, followed by the position states x, y, and z. The terminal cost is associated with
the final state of the system at the end of the prediction horizon. The weighting matrix at
terminal states QN reflects the relative significance of achieving the desired steady state
or target. A higher weight indicates a stronger emphasis on reaching the desired terminal
state. However, since the focus of this work is on the robustness of the controller, QN is set
equal to the values in Q to provide less aggressive control.

Once the MPC has been fine-tuned to attain the desired control performance, the pro-
posed EAOB, as described in Section 3, can be incorporated into the MPC. The estimated
states x̂k|k provided by the EAOB are divided into two components. The first component
consists of the estimated positions η̂ and velocities v̂, which are utilized by the MPC module
to enhance the accuracy of the system states. Simultaneously, the second component, the
estimated disturbances ŵ, is incorporated into the MPC’s prediction model as Equation (22) at
each time step. According to Assumption 2, the disturbance term w throughout the prediction
horizon T remains consistent with the estimated disturbance v̂ at the current time step.

Therefore, the DOBMPC algorithm is implemented in a receding horizon with the
following steps:

1. At the sampling time instant, utilize prediction Equation (36) and update Equation (37)
to estimate the disturbance ŵ using the EAOB approach.

2. Update the parameters within the disturbance term w in the prediction model of
the MPC, as represented by Equation (22), at the current time instant and within the
prediction horizon [0, T], by incorporating the estimated disturbance ŵ obtained in
the initial step.

3. The OCP in the Equation (44) is solved to obtain the optimized control sequence
u∗(s), s ∈ [0, T].

4. The first set of the control sequence u∗(s), s ∈ [0, ∆t] is implemented in the dynamic
system, while the rest will be treated as initial conditions in the next iteration.

5. At the next sampling instant, the OCP in the Equation (44) will be solved again with
the measurement states and new initial condition.

By integrating the EAOB with MPC, the parameters within the disturbance term w
in the MPC’s prediction model are continuously updated at each time step, as outlined in
step 2. This integration results in a nonlinear parameter-varying model. Consequently, the
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MPC’s optimizer incorporates the estimated disturbances, enabling it to generate optimal
control inputs that effectively reject disturbances at each iteration.

To realize the MPC, the OCP should be discretized from t0 to tT and solved with multiple
shooting schemes. Therefore, it becomes a sequential quadratic programming (SQP) which
is executed in a real-time iteration scheme [39]. In this research work, the implementations
are completed through ACADOS [40]. ACADOS is a versatile and efficient open-source
optimization framework designed specifically for real-time MPC applications. It follows a
two-stage approach, consisting of an offline stage and an online stage. In the offline stage,
ACADOS defines the system dynamics, cost function, and constraints, formulating the MPC
problem as a nonlinear programming problem (NLP). It compiles this representation into a
solver-ready format. In the online stage, ACADOS solves the NLP in real time, taking the
current system state as input and iteratively optimizing the control inputs while satisfying
the dynamics and constraints. ACADOS offers various advantageous functionalities, such
as efficient numerical algorithms, real-time capabilities, and the flexibility to choose solvers,
constraints, and objective functions based on specific requirements.

In order to implement MPC in real-world applications, it is crucial to enhance compu-
tational efficiency. This work reduces the computational burden through the utilization of
ACADOS. However, there are alternative methods that can also be considered for real-time
implementation of MPC. In 2020, a new class of condensing-based MPC iteration schemes
was proposed [41], which demonstrated the asymptotic stability and ensured important
constraint satisfaction properties of the closed-loop system, regardless of the number of
Newton updates performed. Another iteration scheme for reducing the computational
burden of constrained discrete-time linear systems was proposed, specifically for moving
horizon estimation-based output feedback MPC [42]. Additionally, a robust early termi-
nation MPC approach was recently introduced [43]. This method is based on the barrier
function and continuous-time primal-dual gradient flow technique. The results indicated
that the proposed approach offers a suboptimal yet feasible and effective solution when
early termination is applied. Considering these alternative algorithms could be benefi-
cial for the implementation of the MPC algorithm, providing further options to enhance
computational efficiency.

The overall block diagram of the proposed DOBMPC is depicted in Figure 4. The
EAOB module receives measurements of positions η, velocities v, and propulsion forces
and moments τ. It then outputs the estimated positions η̂, velocities v̂, and disturbances
ŵ. The MPC module utilizes the estimated positions η̂ and velocities v̂ as system states. It
generates control inputs u based on the error e between the reference trajectory (comprising
positions ηd and velocities vd) and the system states. The estimated disturbances ŵ are
directly written into the MPC prediction model, as illustrated in the figure. The resulting
optimal control inputs u, which account for the disturbances, are then passed through the
control allocation process to drive the system plant.
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Figure 4. Block diagram of the proposed DOBMPC scheme with disturbance compensation
incorporated.

5. Results and Discussion

The performance of the proposed DOBMPC is verified by simulation in the UUV
simulator [44], which is an extension of the open-source robotics simulator Gazebo to un-
derwater scenarios. It is also utilized to construct a more realistic simulation environment.

For real-world implementation, it is crucial to acquire measurements of system states,
encompassing linear and angular positions, as well as linear and angular velocity. In the
absence of GPS signals in the underwater environment, alternative sensors are employed.
Underwater acoustic positioning systems, such as ultra-short baseline (USBL), are commonly
preferred due to their enhanced mobility, providing reliable linear position information for
the UUV. The attitude and heading reference system (AHRS) can be utilized to determine the
UUV’s angular position, including pitch, roll, and yaw, enabling the acquisition of necessary
attitude information. Additionally, the AHRS incorporates gyroscopes as part of its sensor
suite, allowing the estimation of angular velocity. For the UUV’s linear velocity, the Doppler
velocity log (DVL) is typically used. However, an alternative and more economical method
exists, which estimates velocity based on thrust and a static relationship between thrust
and velocity at steady state. It is important to note that this alternative method may exhibit
reduced accuracy, particularly in the presence of significant external disturbances.

The specifications of the BlueROV2 used in this research work are defined in a unified
robot description format (URDF) file, which is used for representing the robot model. The
robot model in the URDF file follows the dynamic model in Section 2. Therefore, the
parameters in the BlueROV2’s model are shown in the following tables. Table 2 indicates
the rigid body parameter includes mass m, weight W, buoyancy B, and inertia Ix Iy Iz.
Table 3 specifies the hydrodynamic terms, which include added mass produced when the
UUV travels through the fluid and the linear damping force caused by the skin friction.

Table 2. BlueROV2 rigid-body parameters defined in URDF file.

Parameter Value

m 11.26 kg
W 112.8 N
B 114.8 N
Ix 0.3 kgm2

Iy 0.63 kgm2

Iz 0.58 kgm2

In the disturbance rejection tests, two motion control problems are employed, which
are dynamic positioning and trajectory tracking. The results from the proposed DOBMPC
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are compared against PID and baseline MPC controllers. Based on Fossen’s theory [29], the
disturbance term is defined in the force level as Equation (22). Therefore, to directly observe
the disturbance rejection performance, the disturbances are generated as body wrenches,
which include forces and moments in 4 DOF. The ROS service ApplyBodyWrench is used
to generate the forces and moments that act at the CG of the UUV in the IRF. Thus, the
rotation matrix, as the Equation (6), is required to transfer the disturbances w that are
estimated in the BRF to the IRF for comparing results.

Table 3. BlueROV2 hydrodynamic parameters defined in URDF file.

Direction Parameter Value

Surge Xu̇ 1.7182 kg
Sway Yv̇ 0 kg
Heave Zẇ 5.468 kg
Roll K ṗ 0 kgm2/rad
Pitch Mq̇ 1.2481 kgm2/rad
Yaw Nṙ 0.4006 kgm2/rad

Surge Xu −11.7391 Ns/m
Sway Yv −20 Ns/m
Heave Zw −31.8678 Ns/m
Roll Kp −25 Ns/rad
Pitch Mq −44.9085 Ns/rad
Yaw Nr −5 Ns/rad

Table 4 lists the MPC parameters that apply to both the proposed DOBMPC and
baseline MPC. The baseline MPC used for comparison also employs the same cost function
as the proposed DOBMPC, as described in Equation (44). Since the prediction horizon
is 60 and the sample time is 0.05 s, the system considers 3 s forward. The average time
for solving the OCP problems is 7 ms, which allows the system to run in real time. The
PID parameters that utilized in this work are also listed in Table 5. The implemented PID
controller utilizes the system states of position η and velocity v, as well as the control
inputs of forces and moments τ. The control inputs computed by the PID controller are
subsequently allocated to each propeller using the control allocation method described in
Equation (18).

Table 4. MPC parameters utilized in this work.

Controller Parameters Value

Prediction horizon 60
Sample time (s) 0.05
Q [300 300 150 10 10 150 10 10 10 10 10 10 15 15 15 0.5]
QN [300 300 150 10 10 150 10 10 10 10 10 10]
OCP time (ms) 7

Table 5. PID parameters utilized in this work.

Control Gain Surge Sway Heave Yaw

Kp 5 5 5 7
Ki 0.05 0.05 0.05 0.1
Kd 1.2 1.2 1.2 0.6

5.1. Dynamic Positioning Results

For dynamic positioning, the UUV encounters two types of disturbances: simulated
periodic wave effects and constant current effects. These disturbances manifest as forces
and moments acting on the UUV. In the case of periodic disturbances, sinusoidal waves
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with random force amplitudes ranging from 10–16 N are applied in the xi, yi, and zi di-
rections, while sinusoidal waves with random moment amplitudes ranging from 1–2 Nm
are applied around the zi axis. Utilization of a wave spectrum model, such as the JON-
SWAP (Joint North Sea Wave Project) spectrum [45], can provide an additional approach
to validate the proposed method and improve the disturbance model in future work. The
JONSWAP spectrum, developed based on extensive measurements of wave characteristics
in the North Sea, offers a statistical representation of wave heights and frequencies, enabling
the simulation of wave forces and wave-induced motions. Recent studies have success-
fully employed this model to estimate the impact of waves on the control system of an
underwater quadrotor [46] and assess the effects of waves and currents on motion control
of underwater gliders [47]. Additionally, a numerical model was developed [48] to study
currents under significant wave height. By further integrating the wave and current model,
it becomes possible to achieve a more precise representation of real-world conditions,
leading to a comprehensive evaluation and refinement of the DOBMPC’s performance.

The UUV is set to remain stationary at the position [0, 0,−20] in the IRF while keeping
a yaw angle of 0 degrees, in the presence of disturbances. Figure 5 displays the estimated
disturbances alongside the generated disturbances. As shown in the figure, the estimated
disturbances closely match the generated disturbances, and the estimation delay is shorter
than the sample time, proving the feasibility of the proposed EAOB.

After compensating the estimated disturbances into the MPC’s prediction model,
it improves the disturbance rejection ability of the controller significantly compared to
the PID and the MPC, as shown in Figure 6. A 2D diagram that indicates the dynamic
positioning results of three controllers is also demonstrated in Figure 7, while the blue
trajectory shows the DOBMPC can stay at the reference point more stably.

Figure 5. Disturbances estimation of periodic waves with random force and moment amplitudes.

Figure 6. Tracking errors of the proposed DOBMPC, baseline MPC, and PID controllers under
periodic disturbances.
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Figure 7. Trajectories of dynamic positioning results of the proposed DOBMPC, baseline MPC, and
PID controllers under periodic disturbances.

The corresponding control inputs of the proposed DOBMPC under periodic waves
are illustrated in Figure 8.

Figure 8. Control inputs of the proposed DOBMPC in surge, sway, heave, and yaw direction for
dynamic positioning under periodic wave effect.

To generate constant disturbances, a 10 N force is applied in the xi, yi, and zi directions
at time t = 10 s, and a 5 Nm torque is applied around the zi axis at the same time. In
Figure 9, a slight overshoot can be observed when the disturbances abruptly change from
0 N to 10 N. This overshoot is caused by the significant difference in estimated states
between two time steps. The EAOB takes less than 0.5 s to accurately adjust the estimated
states using recursive iteration. Figure 10 displays the tracking errors of the proposed
DOBMPC, baseline MPC, and PID controllers when subjected to constant currents. It
clearly demonstrates the varying levels of disturbance rejection capability among the three
controllers. The DOBMPC controller precisely estimates disturbances and compensates
for them, resulting in errors converging to zero in each direction. The x–y diagram in
Figure 11 further illustrates the dynamic positioning performance of the three controllers.
By overlaying disturbances in the same direction, it becomes evident that the proposed
DOBMPC significantly enhances disturbance rejection ability.

The corresponding control inputs of the proposed DOBMPC for dynamic positioning
under constant current effect is illustrated in Figure 12.

In addition, this work also examines the disturbance rejection capability of the super-
position of periodic wave and constant current effect in dynamic positioning. Sinusoidal
waves with random force amplitudes ranging from 3 to 6 N are applied in the xi, yi, and
zi directions, while sinusoidal waves with random moment amplitudes ranging from 1
to 2 Nm are applied around the zi axis. At time t = 4 s, the constant current effect is also
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superposed with 10 N in the xi, yi, and zi directions, and 3 Nm around the zi axis. Figure 13
shows the comparison of applied and estimated disturbances, which are highly coincident.
The tracking error and control inputs are shown in Figures 14 and 15, respectively.

Figure 9. Disturbances estimation of constant currents in x, y, and z directions.

Figure 10. Tracking errors of the proposed DOBMPC, baseline MPC, and PID controllers under
constant currents.

Figure 11. Trajectories of dynamic positioning results of the proposed DOBMPC, baseline MPC, and
PID controllers under constant currents.
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Figure 12. Control inputs of the proposed DOBMPC in surge, sway, heave, and yaw direction for
dynamic positioning under constant currents.

Figure 13. Disturbances estimation of superposition of periodic wave and constant current effect in x,
y, and z directions.

Figure 14. Tracking errors of the proposed DOBMPC, baseline MPC, and PID controllers under
superposition of periodic wave and constant current effect.
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Figure 15. Control inputs of the proposed DOBMPC in surge, sway, heave, and yaw direction for
dynamic positioning under superposition of periodic wave and constant current effect.

5.2. Trajectory Tracking Results

To assess the performance of trajectory tracking, two kinds of movement scenarios
are employed. Firstly, a circular path with a radius of 2 m is employed. The UUV’s yaw
angle is defined to be relative to the surge direction. To assess the system’s robustness, a
10 N force is applied in the xi, yi, and zi directions, along with a 5 Nm torque around the
zi axis. Figure 16 illustrates the comparison between the estimated disturbances and the
generated disturbances. As the disturbance term incorporates unmodeled components
from the dynamic model, the disparity between the estimated and generated disturbances
can be attributed to the nonlinear damping force experienced by the UUV during circular
trajectory movement. The tracking error of PID, MPC, and the proposed DOBMPC is shown
in Figure 17, demonstrating a significant reduction in tracking error with the proposed
DOBMPC. Additionally, Figures 18 and 19 provide a visual representation of the trajectory
tracking results. The corresponding control inputs of the proposed DOBMPC are illustrated
in Figure 20.

Figure 16. Disturbances estimation of constant currents during circular trajectory tracking.
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Figure 17. Tracking errors of the proposed DOBMPC, baseline MPC, and PID controllers under
constant currents during circular trajectory tracking.

Figure 18. Circular trajectory tracking results of the proposed DOBMPC, baseline MPC, and PID
controllers in x, y, z, and yaw directions.

Figure 19. Three-dimensional circular trajectory tracking results of the proposed DOBMPC, baseline
MPC, and PID controllers.
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Figure 20. Control inputs of the proposed DOBMPC in surge, sway, heave, and yaw direction for
tracking circular trajectory under constant currents.

To evaluate the effectiveness of the proposed control method in tracking a highly
nonlinear trajectory, a lemniscate trajectory with a 2 m amplitude is utilized. Throughout
the movement, the yaw angle remains constant at 0 degrees. Additionally, periodic wave
effects are incorporated into the testing process. These waves have random force amplitudes
ranging from 10 to 16 N and random moment amplitudes ranging from 2 to 4 Nm. Figure 21
provides the comparison between generated disturbances and estimated disturbances. The
results demonstrate that the disturbance forces in the xi, yi, and zi directions can still be
accurately estimated when following a lemniscate trajectory. However, challenges arise
when accurately estimating the disturbance moment around zi during the tracking of this
trajectory. This can lead to occasional deviations or noise around the actual disturbance
value. The complexity of unmodeled nonlinear hydrodynamics, which becomes more
prominent when tracking a nonlinear trajectory like the lemniscate, could be a contributing
factor to this issue. In Figure 22, the system states of tracking a lemniscate trajectory
under periodic waves are compared between PID, MPC, and the proposed DOBMPC.
While the system states of PID and MPC exhibit irregularities due to time-varying massive
disturbances, the states of DOBMPC remain relatively smooth. The tracking error, depicted
in Figure 23, shows a significant reduction with the proposed DOBMPC compared to
PID and MPC. Lastly, Figure 24 provides a visual representation of the trajectory tracking
results in three dimensions. The corresponding control inputs of the proposed DOBMPC
for tracking the lemniscate trajectory are illustrated in Figure 25.

Figure 21. Disturbances estimation of periodic waves during lemniscate trajectory tracking.
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Figure 22. Lemniscate trajectory tracking results of the proposed DOBMPC, baseline MPC, and PID
controllers in x, y, z, and yaw directions.

Figure 23. Tracking errors of the proposed DOBMPC, baseline MPC, and PID controllers under
constant currents during lemniscate trajectory tracking.

Figure 24. Three-dimensional lemniscate trajectory tracking results of the proposed DOBMPC,
baseline MPC, and PID controllers.
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Figure 25. Control inputs of the proposed DOBMPC in surge, sway, heave, and yaw direction for
tracking lemniscate trajectory under periodic waves.

5.3. Results Analysis

The above figures demonstrate that the proposed observer can accurately estimate
disturbances of both periodic wave effects and constant current effects. The observer also
shows the ability to capture the unmodeled dynamics. However, it can be observed that
when the frequency of periodic wave effects is too high, the observer may lose the accuracy
of estimating disturbances. This is because the disturbance term is assumed to be a slow
time-varying signal.

Table 6 presents an analysis of the performance of dynamic positioning and trajectory
tracking of the UUV. The evaluation is based on the root mean square error (RMSE). RMSE
is a commonly used metric in control systems literature and has been widely accepted as a
measure of performance. The use of RMSE allows for easy comparison and interpretation
of results across different controllers. It provides a quantitative measure that can be used
to assess and rank the performance of different control strategies. Furthermore, RMSE is
less sensitive to outliers compared to other metrics, such as mean absolute error (MAE). It
considers the squared errors, which amplifies the impact of larger errors, making it suitable
for capturing the performance of control systems where extreme errors may occur.

Table 6. RMSE of the proposed DOBMPC, baseline MPC, and PID controllers in dynamic positioning
and trajectory tracking.

Motion Disturbance Direction PID (m) MPC (m) DOBMPC (m)

X 0.1374 0.1689 0.0537
Dynamic Periodic Y 0.1095 0.1934 0.0605
Positioning wave effects Z 0.0871 0.0896 0.0350

Yaw 0.0536 0.1108 0.0282

X 0.7893 0.3099 0.0521
Dynamic Constant Y 0.7544 0.2882 0.0482
Positioning current effects Z 0.2032 0.1508 0.0469

Yaw 0.7858 0.4547 0.0491

Superposition X 1.4991 0.5666 0.0932
Dynamic of wave Y 1.3921 0.5151 0.0501
Positioning and currents Z 0.2179 0.1603 0.0486

Yaw 0.5141 0.3039 0.1100

Circular X 2.3626 0.8012 0.2924
Trajectory Constant Y 1.6433 0.5521 0.2629
Tracking current effects Z 0.1763 0.1510 0.0233

Yaw 0.4355 0.6325 0.2582

Lemniscate X 0.9854 0.3764 0.2306
Trajectory Constant Y 0.7732 0.3844 0.1504
Tracking current effects Z 0.0877 0.1133 0.0510

Yaw 0.2059 0.2413 0.1457
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The lowest RMSE in each row is highlighted. The results clearly demonstrate that
the utilization of the proposed DOBMPC significantly enhances the system’s ability to
reject disturbances.

6. Conclusions

In this paper, a robust DOBMPC has been developed for dynamic positioning and
trajectory tracking of a UUV in the presence of unpredictable disturbances. The simulation
results provide evidence of the control strategy’s effectiveness in rejecting disturbances. The
proposed control strategy offers several significant contributions. Firstly, it demonstrates the
ability to estimate time-varying disturbances in real time, enabling prompt compensation.
Secondly, it exhibits robustness against measurement noise, ensuring reliable performance.
Moreover, the MPC framework guarantees the consideration of system constraints during
the recursive solving of the optimal control problem. This ensures the UUV operates
within defined limits. The estimated disturbances are directly incorporated into the MPC’s
prediction model at each time step, enabling the calculation of an optimal control law. In
summary, the developed DOBMPC approach provides a robust control strategy for dynamic
positioning and trajectory tracking of UUVs, effectively compensating for disturbances
while considering system constraints.

The future work encompasses two primary aspects. Firstly, a comparative analysis
can be conducted to assess the effectiveness and robustness of the proposed DOBMPC
in relation to other robust controllers, such as SMC [32], which have the capability to
adapt to complex operational environments, and other DOBC methods mentioned in
the literature review [18–21]. These comparisons will provide valuable insights into the
performance of the proposed approach. Secondly, the validation of the DOBMPC can be
enhanced by conducting simulations in a more realistic environment. It can be achieved
by using computational fluid dynamics to create a wave model [49]. This will allow for a
better representation of real-world conditions and further evaluation and refinement of the
DOBMPC’s performance.
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