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Autonomous–Targetless Extrinsic Calibration of
Thermal, RGB, and LiDAR Sensors

Wenyu Yang , Haojun Luo , Kwai-Wa Tse , Haochen Hu , Kang Liu , Boyang Li , and Chih-Yung Wen

Abstract— Mobile robots extensively employ multiple sensors,
including RGBD cameras, LiDAR, and thermal sensors. Sensor
fusion plays a vital role in localization and environment percep-
tion tasks. However, traditional manual target-based methods for
achieving consistent alignment among multiple sensors, especially
thermal cameras, are laborious and lack adaptability. This work
introduces an autonomous–targetless framework for calibrating
LiDAR–RGB and LiDAR–thermal sensors in mobile robots.
In our proposed framework, we examine the characteristics
of thermal images, identify suitable calibration scenarios, and
employ the thermal bridge and line-based PnL algorithm to
enable autonomous and targetless calibration. Experimental
results demonstrate the efficiency of our method, with overall
translation errors of 2.77 and 3.86 cm, and overall rotation
errors of 0.21◦ and 0.46◦, respectively, in LiDAR–RGB and
LiDAR–thermal calibrations. These results are comparable to
state-of-the-art techniques and traditional target-based manual
methods. The analysis of different thermal scenes highlights
the importance of well-aligned and distinguishable edges across
thermal–RGB–LiDAR modalities for optimal calibration results.
Simulation tests using synthetic data and validation tests using
real-world data showcase the robustness of our model in
executing targetless extrinsic calibrations.

Index Terms— Autonomous–targetless calibration,
LiDAR–RGB sensor calibration, LiDAR–thermal sensor
calibration, multimodal extrinsic calibration, PnL.

I. INTRODUCTION

IN COMPUTER vision and robotics applications, sen-
sor fusion enhances various functionalities such as robot

perception, localization, SLAM, and decision-making. The
combination of RGBD cameras, LiDAR, and thermal cameras
has demonstrated synergistic benefits that surpass the output
of individual sensors. By merging information from these
diverse sensors, a robot’s perception system can acquire data

Received 7 April 2024; revised 29 August 2024; accepted
18 September 2024. Date of publication 14 October 2024; date of
current version 31 October 2024. This work was supported by the Research
Center for Unmanned Autonomous Systems, Hong Kong Polytechnic
University, Hong Kong, SAR, China, under Project CE55 and Project CE0F.
The Associate Editor coordinating the review process was Dr. Md. Moinul
Hossain. (Corresponding authors: Boyang Li; Chih-Yung Wen.)

Wenyu Yang, Kwai-Wa Tse, Haochen Hu, Kang Liu, and Chih-Yung
Wen are with the Department of Aeronautical and Aviation Engineer-
ing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
(e-mail: wenyu.yang@connect.polyu.edu.hk; kwai-wa.tse@connect.polyu.hk;
haru-haochen.hu@connect.polyu.hk; kang1.liu@polyu.edu.hk; cywen@polyu.
edu.hk).

Haojun Luo is with the Department of Civil and Environmental Engineering,
The Hong Kong University of Science and Technology, Hong Kong, SAR,
China (e-mail: hluoaw@connect.ust.hk).

Boyang Li is with the School of Engineering, The University of Newcastle,
Callaghan, NSW 2308, Australia (e-mail: boyang.li@newcastle.edu.au).

Digital Object Identifier 10.1109/TIM.2024.3480237

Fig. 1. Sensor rig assembled on a UAV.

encompassing visible light, ambient temperature, and depth.
Fig. 1 illustrates an example use case where an aerial robot
equipped with LiDAR, RGBD camera, and thermal camera
efficiently performs multimodal inspection tasks. However,
sensor fusion also presents challenges, with precise alignment
of sensor data becoming crucial. External calibration is a
key step to establish associations between sensors and ensure
accurate alignment for effective fusion.

Extrinsic calibration entails establishing correspondences
between data obtained from two different sensors, encom-
passing combinations such as LiDAR–RGB, RGB–thermal,
LiDAR–thermal, and others. Our primary focus centers on
multimodal extrinsic calibration, specifically LiDAR–RGB
and LiDAR–thermal calibrations. Among these, LiDAR–RGB
calibration has been extensively studied [1], [2], followed
by RGB–thermal calibration [3], while LiDAR–thermal
calibration remains relatively underexplored [4].

Various calibration methods can be broadly categorized as
target-based or targetless and manual or autonomous. Early
approaches predominantly employed target-based and manual
techniques. Autonomous and targetless calibration is most
desired, although this poses the greatest challenge. Currently,
autonomous and targetless methods are prevalent for RGB-
LiDAR calibration. While LiDAR–thermal calibration meth-
ods are virtually nonexistent. Many existing extrinsic calibra-
tion methods that involve a thermal camera still rely on target-
based approaches. This lack of research and development in
LiDAR–thermal calibration hampers the full utilization of ther-
mal cameras’ advantages, particularly in the context of service
robots. The absence of robust calibration techniques impedes
the advancement of multisensor fusion and downstream algo-
rithms, preventing the realization of their full potential.

Extrinsic calibration encounters its first major challenge
in achieving cross-modal information correspondence, which
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proves difficult even when performed manually. Each sensor
captures data from different domains: thermal cameras capture
infrared (IR) waves, RGB cameras capture visible light, and
LiDAR relies on IR but with a different wavelength, each
representing unique and complementary information. RGB
cameras are adept at capturing detailed texture informa-
tion, whereas LiDAR provides precise distance measurements
despite having sparser data points. On the other hand, thermal
cameras excel in perceiving temperature, making them particu-
larly suitable for tasks like pedestrian detection and avoidance
in service robots and autonomous driving. The complementary
nature of these sensors enhances their effectiveness when used
together.

However, their complementarity presents challenges in
achieving extrinsic calibration, as establishing relevant corre-
spondences between sensors to solve for extrinsic parameters
becomes increasingly difficult. Traditional calibration methods
involve creating calibration patterns capable of generating
temperature information and possessing associated features
like texture and specific geometric shapes. These common
features are then extracted manually or automatically. How-
ever, the complexity and bulkiness of such calibration patterns
make their manufacturing arduous. Moreover, if the extrinsic
parameters of the sensors on the robot change due to vibrations
or collisions, the original calibration becomes invalid, and
further calibration and intervention will be required or false
alignment will be caused.

The second challenge arises from the intricate nature of the
thermal imaging process and the dearth of robotic algorithms
designed to address the autonomous–targetless calibration
problem. The complexity inherent in thermal imaging presents
significant challenges for researchers, resulting in a relative
scarcity of research focused on thermal camera calibration
compared to other sensor types. As a result, most exist-
ing calibration methods for thermal cameras tend to rely
on target-based or manual approaches. The development of
automatic calibration algorithms specifically tailored for ther-
mal cameras is limited, and even fewer options exist for
autonomous–targetless calibration methods. This lack of auto-
mated calibration techniques for thermal cameras impedes the
full utilization of their capabilities within multisensor fusion
systems, hindering a comprehensive understanding of their
potential benefits across various applications.

We tackle the above two problems by investigating the
thermal imaging principle and a cross-modal common fea-
ture extraction method is developed. A LiDAR–RGB and
LiDAR–thermal calibration framework is proposed. The main
contributions of this work are as follows.

1) We propose an autonomous and targetless calibration
framework for LiDAR–RGB and LiDAR–thermal sen-
sors calibration, which is the first autonomous–targetless
calibration method that can directly obtain the extrinsic
parameters between the thermal camera and LiDAR
sensors based on our knowledge.

2) Based on the analysis of thermal edge properties,
we propose thermal edge detection and edge-matching
algorithms and evaluated them in various scenes in terms
of convergence precision and accuracy.

3) The source codes is released1 to benefit the community.
The structure of this article is organized as follows.

We review the related works of multisensor fusion and
autonomous–targetless calibration in Section II. Section III
provides some preliminaries. Section IV details the extrinsic
calibration methodology. Simulation and real-world experi-
ment results are presented in Section V. Finally, we conclude
in Section VI.

II. RELATED WORK

Extrinsic calibration can be categorized based on various
factors or characteristics. Two factors, in particular, signifi-
cantly influence the applicability and cost considerations [5]:
1) autonomous versus manual calibration and 2) calibration
with or without a target [6]. Initially, the manual target-based
approach was the most basic and commonly employed method.
However, the autonomous calibration method without the
need for target pairs is highly sought after due to its
cost-effectiveness and broader scene coverage, making it
the preferred choice. In this section, we conduct a litera-
ture review on sensor extrinsic calibration from these two
dimensions. In Section II-A, we first review the calibration
of RGB–RGB and the calibration of LiDAR–RGB sensor
calibration. In Section II-B, we review RGB–thermal and
LiDAR–thermal sensor calibration.

A. RGB–RGB and LiDAR–RGB Sensor Calibration

As the most widely used and most similar sensor to
human vision, the RGB camera is intensively studied and best
understood. For camera calibration, the most widely applied
method is the one developed by Zhang [1]. This method uses
a checkerboard with a known size as a target and manually
extracts features to obtain responses between real-world and
image points. Subsequent research has largely focused on
improving and extending Zhang’s method. Some researchers
have provided more user-friendly GUIs [7] to label the key
points manually, while others have tried to develop better
algorithms for automatic checkerboard corner detection [8].

With the rapid development of autonomous driving in
the past decade, the price of LiDAR sensors has also
dropped significantly [9]. As a 3-D sensor, LiDAR is natu-
rally complementary to cameras, so there has been a lot of
research on LiDAR–RGB calibration [10]. The development
of LiDAR–RGB is also similar to camera calibration. In the
early days, target-based and manual methods were predom-
inant [11]. Then, some researchers developed autonomous
feature detection [2] feature matching [12]. Most recently,
autonomous–targetless extrinsic calibration methods have
drawn the attention of the research community [13], [14].

The main breakthroughs and innovations in calibration
methods are in two areas:

1) toward autonomous feature detection and
2) toward generic scenes.

In the first domain, with the advancement of computer vision
technology, automatic feature detection algorithms have con-
tinuously evolved, thereby simplifying the calibration process.

1https://github.com/allenthreee/thermal_range_calib
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Simultaneously, these automatic detection algorithms have
also enhanced the precision when utilizing fixed calibration
patterns [15]. In the second domain, feature detection meth-
ods have expanded beyond the confines of checkerboards.
Automatic detection approaches for objects such as boxes
[12], spheres [16], and other entities have been developed.
Furthermore, methods for detecting people, skylines, or edge
discontinuities have also emerged [17]. Overall, the progress in
this field is geared toward more versatile features and increas-
ingly automated and accurate feature detection. However,
these two factors somewhat impose constraints on each other
since more general features may result in reduced accuracy.
To enhance accuracy and automation, the utilization of more
specific calibration targets becomes necessary.

In summary, the core process of these methods is:

1) feature detection;
2) feature matching; and
3) extrinsic solving.

Although there are also other schools of thought, such
as information theory-based methods [18], the most widely
used, mature, and reliable technique, offering the highest
accuracy, remains the aforementioned three-step process. From
Zhang’s [1] pioneering method to the present day, the vari-
ations among different techniques lie primarily in whether
features are manually or automatically extracted and whether
these features are obtained from artificially created targets or
extracted from the surrounding environment. As the pursuit
of greater autonomy and universality in extrinsic calibration
methods intensifies, so does the challenge. Consequently,
we speculate that the main direction of development lies in
autonomous–targetless calibration methods.

B. RGB(D)–Thermal and LiDAR–Thermal Sensor
Calibration

There exists a scarcity of studies focused on the extrinsic
calibration between thermal cameras and other sensors; how-
ever, the calibration process bears similarities to that of RGB
cameras [19]. The use of calibration checkerboards is common
in earlier researchers [20]. Nonetheless, the creation of a
checkerboard for thermal cameras poses challenges due to the
requirement of introducing a temperature difference onto the
checkerboard, which subsequently induces heat transfer, while
the colored pattern remains fixed [21]. Numerous endeavors
have been undertaken to devise reliable calibration patterns
[3]. Nevertheless, the manufacturing of such patterns proves
exceedingly laborious, thereby impeding the widespread adop-
tion of thermal cameras and their fusion with other types of
sensors.

Following the standard pipeline of 1) feature extraction,
2) feature matching, and 3) extrinsic solving, one of the main
difficulties is to align thermal and visible or geometric features
by finding features in the environment. Lussier and Thrun [22]
used the human body as a target because the temperature of the
human body is usually significantly different from the ambient
temperature. Recently, Fu et al. [23] used buildings to extract
edges and then used these edges for calibration.

TABLE I
COMPARISON OF DIFFERENT MULTIMODAL

EXTRINSIC CALIBRATION METHODS

While several attempts have been made to calibrate thermal
cameras and LiDAR sensors directly, no successful outcomes
have been reported thus far. Fu et al. [23] have made
notable progress toward this objective, although the presence
of relatively large errors in their method can be attributed
to the inherent blurriness of thermal images when compared
to colored images [24] and LiDAR point clouds are sparse.
These factors present challenges for optimization algorithms,
hindering their convergence and the attainment of accurate
results. In our research, we thoroughly analyze these factors
and propose solutions to mitigate their impact, potentially
establishing the first autonomous and targetless calibration
method capable of directly calibrating thermal cameras, RGB
cameras, and LiDAR sensors. Table I provides an overview of
the sensor modalities and algorithmic limitations associated
with various approaches for multimodal extrinsic parameter
calibration.

III. PRELIMINARIES

In this article, we minimize the reprojection error of edge
features to solve for the extrinsic parameters (i.e., relative pose
including rotation and translation) between different sensors.
The translation vector can be represented by a 3-D vector,
while there are multiple choices for representing rotation, such
as Euler angles, quaternions, rotation matrices, and rotation
vectors. To facilitate optimization without introducing new
constraints (quadratic constraint of unit quaternions), we use
rotation matrices (Lie Group on SO(3)) and rotation vectors
(Lie Algebra of the Lie Group SO(3)) to represent rotation
and optimize using rotation vectors that are living on smooth
manifolds. We minimize the cost function using nonlinear
optimization on a smooth manifold. To clearly state the
problem, we provide a brief review of some useful concepts.

A. Basic Notations

We use R ∈ R3×3 to denote a 3-D rotation matrix, t ∈ R3 to
denote the 3-D translation vector and

T =

[
R t
0 1

]
∈ R4×4

to denote 3-D rigid body transformation. Considering two
transformation matrices

T1 =

[
R1 t1
0 1

]
and

T2 =

[
R2 t2
0 1

]
∈ SE(3)
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where SE(3) represents the Special Euclidean Group in three
dimensions, we define the transformation as

T1 · T2 =

[
R1 R2 t1 + R1 t2

0 1

]
.

We use T21 to denote the transformation matrix from coor-
dinate 1 to coordinate 2. For a specific scenario, we aim to
add two vectors r pq

v and rqi
w . Here, the vector rqi

w points from
point q to point i located in the world coordinate system, while
r pq
v points from point p to point q in the vehicle coordinate

system. To achieve this, we first transform the vector r pq
v to

the world coordinate system using Tvw. Subsequently, we add
this transformed vector to rqi

w . The complete transformation
operation can be described as follows:

r pi
w = Twvr pq

v + rqi
w . (1)

B. Lie Group and Lie Algebra

The Special Orthogonal Group (the Rotation Group)
describes the group of rotation matrices and it is formally
defined as SO(3) = {R ∈ R3×3

|RR⊤
= I, det (R) = 1},

and the Special Euclidean Group describes the group of rigid
motion in 3-D, which is the semi-direct product of SO(3) and
R3. It is defined as

SE(3) =

{
T =

[
R t
0 1

]
∈ R4×4

|R ∈ SO(3), t ∈ R3
}
.

The Group SO(3) forms a smooth manifold, and in its
tangent space of the identity is the Lie Algebra so(3) (which
can be identified with the rotation vectors) of SO(3). The
Lie Algebra so(3) consists of all skew-symmetric matrices
R ∈ R3×3. This means that every skew-symmetric matrix in
R3×3 can be mapped by a vector w ∈ R3 by the hat operator
(·)∧

w∧
=

w1
w2
w3

∧

=

 0 −w3 w2
w3 0 w1

−w2 w1 0

 ∈ so(3). (2)

For the 3-D rotation group SO(3), we have its Lie algebra

so(3) =
{
φ ∈ R3, 8 = φ∧

∈ R3×3}. (3)

And for the 3-D transformation group SE(3), we have its Lie
algebra

se(3) =

{
ξ =

[
ρ

φ

]
∈ R6, ξ∧

=

[
φ∧ ρ

0⊤ 0

]
∈ R4×4

}
(4)

where ρ ∈ R3×3, φ ∈ so(3). We can map a skew-symmetric
matrix to a vector w ∈ R3 using the vee operator (·)∨.

The exponential map (at the identity) exp: so(3) → SO(3)

maps an element of the Lie Algebra to its Lie Group (the
rotation matrix) and coincides with standard matrix exponen-
tial (Rodrigues’ formula)

exp(φ∧) = I +
sin(∥φ∥)

∥φ∥
φ∧

+
1 − cos(∥φ∥)

∥φ∥2 (φ∧)2. (5)

The logarithm map (at the identity) associates a matrix R ̸= I
in SO(3) to a skew-symmetric matrix

log(R) =
ϕ · (R − R⊤)

2 sin ϕ
with ϕ = cos−1 tr(R) − 1

2
. (6)

The capitalized are convenient shortcuts to map vector ele-
ments. For notational convenience, we adopt capitalized Exp
and Log maps to map vector elements to the Rotation matrix
and vice versa

Exp : R3
→ SO(3); φ 7→ exp(φ)∧ (7)

Log : SO(3) → R3
; R 7→ log(R)∨ (8)

which operate directly on vectors, rather than on
skew-symmetric matrices in se(3).

C. Derivatives on Lie Group SO(3)

Following [26], we define plus and minus operators to
introduce increments between elements on the manifold of
SO(3), which are expressed on the tangent space of the
manifold. In our notation, we denote the plus and minus
operators as ⊕ and ⊖, respectively. The ⊕ adds an incremental
element in the Lie algebra so(3) to an element within the Lie
Group SO(3). The ⊖ subtracts two elements within the Lie
Group SO(3) and yields an element within Lie Algebra so(3).

Giving a 3-D rotation f : SO(3) → R3 of a 3-D point p;
f (R) = Rp, we have

dRp
p

= lim
θ→0

(R ⊕ θ) p ⊖ Rp
θ

= lim
θ→0

(RExp(θ) p − Rp
θ

= lim
θ→0

R(I + [θ ]×) p − Rp
θ

= lim
θ→0

R[θ ]× p
θ

(9)

= −R[ p]× ∈ R3×3.

IV. EXTRINSIC CALIBRATION

The most widely used method for extrinsic calibration can
be divided into three steps: 1) feature extraction; 2) feature
matching; and 3) extrinsic parameter estimation, as shown in
Fig. 2. Common features include point features, line features,
and surface features. Feature matching can be divided into
two types: 1) descriptor-based matching, which calculates the
similarity of features using descriptors, and 2) spatial-based
matching, which calculates the spatial distance of features and
selects matched features with similar spatial distances. Point
feature matching is usually achieved by descriptors and is used
more in camera images, while line feature matching often uses
spatial distance, and line features are commonly used in cross-
modal calibration. In this article, we extract line features and
match them using spatial distance.

A. Edge Detection

1) LiDAR Edge Detection: LiDAR generates 3-D point
clouds, capturing 3-D spatial information without being
affected by changes in lighting. Extensive research has been
conducted on extracting features from LiDAR point clouds,
typically treating discontinuities in the 3-D point cloud as
3-D edges. However, the point clouds generated by LiDAR
have bleeding edges, and extracting all edges would introduce
significant errors and reduce the accuracy of the calibration
algorithm. To avoid such error sources, connected edges are
preferred. In this article, we primarily use the method proposed
by Yuan et al. [13] to extract 3-D edges. Specifically, as shown
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Fig. 2. Schematic of the autonomous–targetless extrinsic calibration process.

in the top-left of Fig. 2, the RANSAC algorithm is used to fit
planes on dense point clouds. Then, the intersection lines of the
planes are extracted as connected edges and prepared for sub-
sequent calibration. For solid-state LiDAR such as the Livox
series, dense point clouds can be obtained by accumulating
point clouds at the same location. For mechanical (rotating)
LiDARs, the LiDAR needs to be moved around and algorithms
such as Fast-LIO [27] are run to generate dense point clouds.

2) Thermal Edge Detection: The key distinctions between
thermal images and RGB images can be summarized in two
aspects. First, most RGB images represent steady-state condi-
tions, whereas thermal images capture transient states. Second,
thermal edges tend to be blurrier compared to RGB edges.
In most scenarios, the color and shape of an object remain
unchanged, while its temperature changes, flowing from high
to low. RGB images rely on visible light to capture information
related to color and geometry, while thermal images capture
temperature differences. Consequently, the dynamic nature
of temperature variations introduces the difference between
transient and steady states in thermal images (whereas RGB
images can be considered as representing steady states), and
it also contributes to the blurred appearance of thermal edges.
The widely used Canny Edge algorithm, which has been
optimized over the years for RGB images, is not specifically
tailored for thermal images. Therefore, we have developed a
novel edge detection algorithm to address the aforementioned
issues.

Transient and steady-state temperature fields are influenced
by the principles of Fourier’s law, which governs the flow of
heat transfer from high-temperature objects to low-temperature
objects. In the absence of an external heat source, the temper-
ature field of an isolated system with a temperature difference
will evolve over time until the temperature becomes homo-
geneous. In a thermal image, black tends to “flow” toward
white. In contrast, in an RGB image, there is no inherent
“flow” from black to white based on temperature. Hence,
we distinguish between transient temperature differences and
steady-state temperature differences in thermal images based
on whether the temperature changes over time (i.e., the
presence or absence of an external heat source maintaining

the temperature difference). We classify a stable environment
that can be maintained during the period of data collection for
calibration (approximately 30 min) as a steady state. On the
other hand, scenes that need to be heated multiple times such
as passive calibration patterns are categorized as transient.

In the absence of a stable heat source, artificially created
temperature differences for calibration purposes are typically
transient. A checkerboard pattern heated by a heat gun is an
example of a transient state. In these artificially created tran-
sient temperature difference scenarios, due to their transient
nature and the gradual reduction of temperature differences,
the clarity of boundaries is limited, leading to increasingly
blurred thermal edges during the calibration process.

Stable temperature differences in an environment are gener-
ated by heat sources such as human body temperature [22] and
active calibration patterns that have heating resistors. When the
heat dissipation from the air and the heat generated by these
sources reach equilibrium, steady-state temperature differences
occur, leading to local stability. Observing that the temperature
variation of building contours is relatively slow, within the
data collection period of several tens of minutes, it can be
considered as a steady-state condition. Therefore, structured
environments capable of generating temperature differences
can be utilized as calibration scenes. This approach eliminates
the need for external heat sources or active calibration patterns,
reducing complexity and cost while still providing a suitable
environment for calibration.

However, before utilizing building contours for calibration,
it is necessary to address the issue of detecting blurry edges in
thermal images. Heat transfer occurs at the boundaries between
objects with different temperatures, resulting in a diffuse
phenomenon at the edges, making thermal images typically
blurrier compared to RGB images. As shown in Fig. 3, there
are four common image edge models: step, ramp, pulse, and
ridge. In thermal images, the temperature cannot exhibit a
sudden change (or maintain a sudden change continuously)
because heat conducts and flows. Unlike color and geometry,
which can remain constant at a pixel, temperature values
cannot. Therefore, step and pulse models, which are common
in RGB images, are almost nonexistent in thermal images. The
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Fig. 3. Different edge models.

Fig. 4. Thermal edge extraction example. (a) Thermal edge detection with a
Sobel operator. (b) Thermal edge detection with a second-order edge detector.
(c) Thermal edge detection with a combined edge detector.

remaining ramp and ridge edge models are more prevalent in
thermal images.

Most edge detection algorithms are developed for the
common step and pulse models observed in RGB images,
where the first-order gradient is used to detect edges. These
algorithms are unable to effectively detect edges corresponding
to the ramp and ridge models commonly found in thermal
images. As shown in Fig. 3, the first-order derivative for
ramp and ridge edge models is not local maximum, whereas
the second-order derivative for the ridge model is the local
maximum.

Ramp edges typically occur at the boundary of different
mediums, such as the boundary of solid and air, which
are also bleeding edges for LiDAR edges. On the other
hand, ridge edges typically occur at the junctions of different
materials or where there are geometric changes of the same
material, such as corners of walls. Hence, ridge edges in
thermal images correspond to connecting edges in the 3-D
space, which are preferred for LiDAR extrinsic calibration.
Therefore, this study proposes a method that combines the
first- and second-order derivatives for thermal image edge
detection. Traditional Canny edge detection [28] is used for
RGB image edge detection. An example of the proposed edge
detection method and Canny edge detection is shown in Fig. 4.

B. Feature Matching

According to the summary of Section II, feature matching is
mainly divided into two types: the former is based on feature
descriptor, which is often used for point features; and the
latter is based on spatial relationship, which is mainly used
for edge or line features. In this article, we propose a novel
edge-matching method based on spatial relationships. The
edge matching process is summarized in Algorithm 1. This
method utilizes geometric constraints and edge orientation
to achieve robust and accurate results. By incorporating the
spatial information of edges, it can handle complex scenes
with occlusions and cluttered backgrounds. The experimen-
tal results demonstrate that our method outperforms the
state-of-the-art methods in accuracy and robustness.

Assume M 3-D edges are extracted from the 3-D point
cloud and N 2-D edges are extracted from the RGB image
or thermal image. Denote the set of edge points in 3-D point
cloud as P = {P j

i ; i = 1, . . . , M; j = 1, . . . , edge[i].size()}
and the set of edge points in the 2-D image plane as p =

{p j
i ; i = 1, . . . , N ; j = 1, . . . , edge[i].size()}. To build the

matching relationship between 2-D and 3-D edges, we first
randomly sample multiple points in every 3-D edge, then
project this 3-D edge point cloud to a 2-D image plane
according to the initial extrinsic and search in the neighbor
area of the projected points. Lastly, the image coordinate of the
projected point is adjusted to the mean value of its k nearest
neighbors. After all the sampled points have been matched,
we can match the 3-D edge with the 2-D edges.

Algorithm 1 2-D and 3-D Edge Matching Algorithm
Input: 2D edges l, 3D edges L , thermal camera intrinsic,

initial extrinsic
Output: Matching pairs between 2D and 3D edges

1: for i = 1 to 3D_edges.si ze() do
2: random sample k points in each edge
3: for j = 1 to K do
4: project 3D point P j

i onto 2D image plane as p j
i

5: search q j
i in the k nearest neighbors of p j

i
6: compute qi =

1
k

∑k
pt=1 q j

i

7: compute ni =
∑k

pt=1(q
j

i − qi )(q
j

i − qi )
⊤

8: end for
9: end for

10: return edge pairs {L , l}

C. Extrinsic Calibration

Having edges extracted and matched, we will address the
problem of extrinsic calibration of a camera C or a thermal
camera Th and a LiDAR LiDAR. Let TCLiDAR be the relative
pose between the reference frame from the LiDAR to the
camera and TThLiDAR be the relative pose from the LiDAR
to the thermal camera. To simplify notation, we denote T =

[R|t] ∈ SE(3) as the relative pose from the LiDAR to the
other two 2-D sensors.

1) PnL: As shown in Fig. 5, given a pair of 2-D-to-
3-D line correspondence, we have two constraints on the
camera pose [29]. Formulating the extrinsic solving as a PnL
problem, the relative pose could be solved by at least three
line correspondences. Most scenes hold more than three edge
correspondences, and the extrinsic parameter could be solved
by at least one shot.

Assume that the intrinsic matrix of the camera is KC and
the homogeneous coordinate of a 2-D line l j

i is l j
i . The

backprojection plane of li is [KC li ; 0] [29], and the normal of
the 2-D line on the backprojection plane l j

i is n j
i . A straight

line could be represented by a unit direction vector v and a
point p which is closest to the origin of the line. Together
with the camera center, the 3-D line forms a norm vector in
the camera frame nC = (nx

C , ny
c , nz

C)⊤.
Considering one line correspondence in 3-D and 2-D space

L j
i ↔ l j

i , the 2-D line in the thermal image is the intersection
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Fig. 5. Perspective-n-line algorithm schematic.

of the 3-D line with the thermal image plane. The 2-D line,
the 3-D line, and the camera center lie on the same plane
which can be parameterized by the camera center and a normal
vector n. As in (1), we can transform the normal vector from
the LiDAR coordinate to the camera coordinate as follows:

nC = T CLiDAR · nLiDAR. (10)

For any 3-D point P = (x, y, z)⊤ on the 3-D line and a 2-D
point p = (u, v, 1)⊤ on its corresponding 2-D line, we have
the constraint with the norm vector formed by the 3-D line
and the camera center. After transforming the normal vector
into the thermal camera coordinate, nC can form a constraint
with any point on the corresponding thermal edge

0 = nC(K C T CLiDAR P − p)⊤. (11)

The above equation can be viewed as the cost function of the
extrinsic parameter. The extrinsic parameter can be obtained
by solving the least-mean-square error problem

T CLiDAR = arg min
T CLiDAR

1
2

∥∥∥∥∥
n∑

i=1

nC(K C T CLiDAR P i − pi )
⊤

∥∥∥∥∥
2

2

.

(12)

The main reprojection error is caused by noise orthogonal
to the direction of the line and is unrelated to the line length.
A scalar len, which is the length of the line, is applied to the
distance function to make longer and shorter edges contribute
equally to the cost function.

To obtain an unconstrained optimization form, we solve (12)
on the tangent space of the manifold. As in (4), we use
ξ ∈ R6 to represent the relative transformation between the
thermal camera and the range sensor. Then, the error term can
be expressed as

e(ξ) = nC(K C exp(ξ∧)P i − pi )
⊤. (13)

The derivative can be derived using the ⊕ and ⊖ operators
defined in Section III-C

∂e
∂δξ

= lim
ξ→0

e(δξ ⊕ ξ) − e(ξ)

δξ
=

∂e
∂T CLiDAR P

∂T CLiDAR P
∂δξ

.

(14)

Substituting (9) into (14), we have the gradient of the line
point reprojection error (15), as shown at the bottom of the
next page.

This nonlinear optimization problem is solved using the
Levenberg–Marquardt method [30].

2) Uncertainty: Since sensor data such as LiDAR point
cloud and thermal image can be noisy, there will be inevitably
uncertainty in our calibration results. It is better to estimate
the calibration uncertainty at the same time. The uncertainty
is characterized by a covariance 6 of the calibration results.

V. EXPERIMENT RESULTS

In this section, we evaluate our method by both simulation
and real-world datasets. An Intel Realsense D435 RGBD
camera, an iRay T3S thermal camera, and a Livox Mid-
360 LiDAR mounted on a Totem-250 UAV frame are used
to generate the datasets, as shown in Fig. 1. The LiDAR
is installed on top of the UAV platform, while the thermal
camera and the RGBD camera are assembled inside a 3-D
printed rig which is mounted in the front of the UAV. The
LiDAR, the stereo camera, and the thermal camera run at
10, 25, and 30 Hz, respectively. Some examples of the data
captured by different sensors are shown in Fig. 6.

Section V-A introduces the simulation environment and
results, followed by the introduction of real-world experiments
in Section V-B. Table II gives the sensor specifications.

A. Simulation Results

A common problem for quantitatively assessing extrinsic
calibration results is the unavailability of the exact ground truth
[2]. Due to the lack of ground truth, many earlier efforts used
manually annotated results as a benchmark and evaluated the
calibration results qualitatively by contrasting the discontinuity
in data fusion. Qualitative analysis only provides a general
comparison and obscures the specific factors that influence
the results. To fully describe the effectiveness of the suggested
strategy and the impact of various variables, some researchers
focused on simulation verification.

Benefiting from recent developments, we built a simulation
suite that contains a thermal camera in the Gazebo platform.
The simulation suite consists of a thermal camera, an RGBD
camera, a LiDAR, and the calibration scene. The sensor
properties, including resolution, field of view, and accuracy,
are replicated in the simulation suite. As shown in Fig. 7,
a thermal camera, an Intel Realsense D435 RGBD camera, and
a LiDAR are modeled in the simulation suite. RGB images are
captured by the left camera of the RGBD camera, and thermal
images are captured by the thermal camera. To obtain a dense
LiDAR point cloud, the LiDAR is slightly moved during the
point cloud record process. Afterward, the LiDAR-inertial
odometry Fast-lio [31] is used to track LiDAR motion and
register all points to the LiDAR’s initial pose. We build a
calibration scene using an apartment model as the background
and several walls with different temperatures as the foreground
to generate edge features in the simulation environment. The
point cloud generated by the LiDAR in the simulation is shown
in Fig. 8.

In the simulation environment, all parameters are under
control, so we assume perfect feature detection and matching.
Under this assumption, the factors that may influence the
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Fig. 6. Example scenes in different modality. (a) and (d) RGB image, (b) and
(e) thermal image, and (e) and (f) LiDAR point cloud.

TABLE II
SENSOR SPECIFICATIONS

Fig. 7. Simulation in Gazebo, RGB, depth, thermal image, and LiDAR point
clouds are captured. Different temperature is assigned to the ground, different
walls, and human models. The house has the same temperature as the gray
wall.

calibration results could be categorized into two folds, namely:
1) the number of frames captured at different relative poses
between the sensor rig and the calibration scene and 2) the
noise level added to the data captured by the different sensors.
Since the FOV of the thermal camera is relatively small, the
thermal camera is placed right under the RGBD camera and
the LiDAR. All sensors heading in the same direction, so that
the image and point cloud captured by the three different
sensors can be fused effectively.

Fig. 8. LiDAR point cloud and 3-D edge extraction in RVIZ.

TABLE III
MEAN (AND STD DEV) OF LINEAR (et ) AND ANGULAR (er )

CALIBRATION ERRORS IN DIFFERENT POSES

1) Single-Pose Experiments: In this section, we feed only
one frame into the pipeline to demonstrate the feasibility of
single-frame calibration. To evaluate the impact of acquiring
data from different relative positions and angles on the calibra-
tion results, we collect data at three distinct points: P1, P2,
and P3 shown in Fig. 7. Given the ground-truth transformation
T gt and the estimated transformation T̂ , we compute the trans-
formation error in terms of rotation error er and translation
error et as follows:

er =∥Log(R⊤

gt R)∥ =∥Log(δR)∥ (16)

et =∥tgt − t̂∥ =∥δ t∥ (17)

where R is the rotation matrix, Log() operation refers to (7),
and t is the translation vector. R and t together form the
transformation matrix as in (4). The single pose calibration
results are shown in Table III.

From the table, it can be observed that overall, the
algorithm provides more accurate and robust estimates for
rotation compared to translation. Both rotation and trans-
lation accuracy vary among different sensor combinations,
with the LiDAR–RGBD combination being the more precise
and the LiDAR–thermal combination showing the lowest
accuracy. We also set identical camera parameters for both
thermal and RGB cameras with resolutions of 320 × 240 and
640 × 480 in the Gazebo simulation. The FoV of all cameras
is set as 60◦

× 47◦. Table IV presents the experimental results.
It is evident from the table that the reprojection error remains
consistent across all control groups, as the PnL algorithm

∂e
∂δξ

= −n⊤

i


fx

Z ′
0 −

fx X ′

Z2 −
fx XY

Z2 fx +
fx X2

Z2 −
fx Y
Z

0
fy

Z
−

fyY
Z2 − fy −

fyY 2

Z2

fy XY
Z2

fy X
Z

. (15)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on December 10,2024 at 12:01:35 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: AUTONOMOUS–TARGETLESS EXTRINSIC CALIBRATION OF THERMAL, RGB, AND LiDAR SENSORS 4510011

TABLE IV
CALIBRATION ACCURACY COMPARISON USING CAMERAS WITH

DIFFERENT RESOLUTIONS IN GAZEBO SIMULATION

Fig. 9. Calibration result affected by the number of poses. (a) Rotation error.
(b) Translation error.

minimizes the reprojection error in pixel values. However,
due to the difference in camera resolution, with the same
reprojection error, the translation error is nearly twice as large
for small-resolution cameras.

In conclusion, the results obtained from single-frame cal-
ibration demonstrate the effectiveness of the algorithm and
lay the foundation for multiframe calibration. In addition, the
comparison between different resolutions indicates that, with
the same reprojection error, the absolute error is influenced
by the camera resolution. The higher the resolution, the
more precise the absolute transformation accuracy that can
be achieved.

2) Multipose Experiment: The accuracy of the calibration
results in the context of multipose experiments can be influ-
enced by various sources of noise inherent to the method, such
as sensor noise and feature detection errors. When the sensor
rig is posed at different positions and data is collected using
diverse approaches, including features with varying depths and
noncoplanar lines, additional constraints can be obtained by
providing new poses. This process has the potential to decrease
ambiguity and enhance accuracy.

The rotation and translation errors decreased with the
increase of the frames used in the calibration process as shown
in Fig. 9. As can be seen, the rotation error reaches a relatively
stable state when the number of input frames is more than 6,
while translation estimation is more prone to noise and reaches
a high accuracy when the number of input frames exceeds 7.

B. Real-World Experiment

In this section, our system is evaluated in real-world exper-
iments, both quantitatively and qualitatively. The ground-truth
extrinsic parameters are obtained by manually selecting corre-
sponding feature points between ten frames and applying the
PnP algorithm based on these correspondences.

We test our method in a variety of scenes, as depicted
in Fig. 10. Data collection is guided by the analysis
in Section IV-A, considering the thermal properties and

Fig. 10. Example calibration scenes. (a) Library corner. (b) Library seat.
(c) Library window.

Fig. 11. Cost comparison using the proposed thermal edge detector and the
Canny edge detector of LiDAR–thermal calibration in different scenes.

geometric edge distributions to ensure alignment between
thermal edges and geometric edges.

1) Convergence Validation: To assess the convergence of
the proposed method for estimating extrinsic parameters,
experiments are conducted under three distinct scenarios as
depicted in Fig. 10. A randomized initialization approach is
employed to ensure robustness, with initial values sampled
within a range of ±5◦ in rotation and 5 cm in translation. Each
scenario is executed 20 times to yield statistically significant
results. The cost function is evaluated for each run, and the
statistical analysis of the results is presented in Fig. 11. Our
findings demonstrate successful convergence of the proposed
algorithm in all scenarios, with final estimates exhibiting mini-
mal cost. These results indicate the reliability and effectiveness
of our method in accurately estimating extrinsic parameters
across diverse scenes.

2) Precision and Accuracy: To evaluate the precision of the
proposed method, we calculate the calibration error relative
to the mean value of extrinsic statistics to test the variance
of the proposed method. All results are obtained running
batch optimization on eight frames according to the simulation
results that the extrinsic error stability is observed upon sur-
passing the threshold of eight frames of data. We compared our
method with several others, including an indirect calibration
method as a control group, that is, TThLiDAR = TThC · TCLiADR,
as used by Fu et al. [23]. Although the error in TCLiDAR
by Fu et al.’s [23] method is similar to other methods, the
overall error of TThLiDAR is larger due to the accumulated
uncertainty of the indirect process. The boxplot in Fig. 12
shows that in the six axes for rotation and translation, our
method achieved the smallest variance in five directions out
of six axes in LiDAR–RGB calibration, and the smallest
variance in four directions out of six axes in LiDAR–thermal
calibration. In the yaw direction, our mean error is closer to
zero.
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Fig. 12. Comparison experiment of calibration accuracy. (a) LiDAR–RGB
rotation error. (b) LiDAR–RGB translation error. (c) LiDAR–thermal rotation
error. (d) LiDAR–thermal translation error.

TABLE V
EXTRINSIC CALIBRATION COMPARISON

To further validate the effectiveness of our proposed method,
a comparative analysis is conducted with the extrinsic from
the CAD model as ground truth. In real experiments, we do
not have the absolute ground truth as in simulations. There-
fore, we use a CAD model as the ground truth. However,
it should be noted that using CAD for extrinsic calibration
can introduce large reprojection errors. Table V presents the
comparison results of calibration errors. It is evident that our
method achieves superior results in terms of reprojection error
among autonomous–targetless extrinsic calibration compared
to Yuan et al. [13] and Fu et al. [23] for both LiDAR–RGB and
LiDAR–thermal extrinsic calibration. In terms of translation
and rotation accuracy, our method achieves results compara-
ble to other methods. In addition, it performs on par with
the manual method. Particularly, our method demonstrates
remarkable accuracy in both LiDAR–RGB calibration and
LiDAR–thermal calibration, with overall translation errors of
2.77 and 3.86 cm, and overall rotation errors of 0.21◦ and
0.46◦, respectively. Moreover, our method enables the direct
and autonomous–targetless calibration of both the thermal
camera and LiDAR. Previously, no existing method offered
the capability to directly calibrate the combination of LiDAR
and thermal sensors in such a manner.

3) Fusion Results: Fig. 13 shows the fusion result of the
LiDAR point cloud and the RGB image in the stereo camera.
It can be seen from the fusion result that the LiDAR point
cloud edges are in good alignment with the RGB image edges.
LiDAR points near the LiDAR center are represented by red
color and points far from the LiDAR are represented by blue
color. The trend of color changes in the image is consistent
with reality.

Fig. 13. Image fusion result of the RGB image and the LiDAR point cloud.
(a) Raw RGB image, the FoV of the thermal camera is shown in the red box.
(b) RGB image with LiDAR point cloud projection.

Fig. 14. Image fusion result of the thermal image and the LiDAR point
cloud. The FoV of the thermal camera is shown in the red box in Fig. 13.
(a) Thermal image. (b) Thermal image with LiDAR point cloud projection.

Fig. 14 shows a qualitative fusion result of the LiDAR
point cloud and the thermal image at the same scene as
depicted in Fig. 13, using the parameters obtained by our
calibration method. Since the FOV of the thermal camera is
much smaller than the RGBD camera and LiDAR, the thermal
information only covers a part of the other two sensors. Still,
it demonstrates the feasibility of the proposed method.

VI. CONCLUSION

In this article, we have presented an autonomous–targetless
calibration method for LiDAR–RGB and LiDAR–thermal cal-
ibration, representing the first autonomous–targetless approach
capable of directly calibrating a thermal camera and a LiDAR,
as supported by the literature review. The method extracts
line features from 2-D thermal images and 3-D point clouds
and solves the extrinsic parameters based on the line feature
correspondences. We have developed a simulation calibration
suite on the Gazebo platform, incorporating a thermal camera.
The performance of the proposed method has been rigor-
ously assessed through systematic estimation using synthetic
data and qualitative validation using real-world data. In both
LiDAR–RGB calibration and LiDAR–thermal calibration, the
method has demonstrated exceptional accuracy, with overall
translation errors of 2.77 and 3.86 cm and overall rotation
errors of 0.21◦ and 0.46◦, respectively. These results are com-
parable to those achieved by traditional target-based manual
methods. Different thermal scenes have been analyzed based
on the thermography process. The presence of distinguishable
and well-aligned edges in different modalities (thermal–RGB–
LiDAR) has been identified as the key to obtaining ideal
calibration results. As part of future work, we plan to explore
autonomous bad scene rejection mechanisms and enhance
calibration accuracy through the utilization of a more precise
thermal edge detection method.
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