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Abstract—Unmanned underwater vehicles (UUVs) are increas-
ingly important for various underwater tasks, and achieving
autonomy for UUVs is a major focus. This is crucial for enhancing
safety, flexibility, extending operational range, and reducing costs.
However, designing effective and robust control algorithms for
UUVs is challenging due to nonlinear dynamics, uncertainties,
constraints, and environmental disturbances. Model predictive
control (MPC) is a well-established technique for UUV control,
while how to obtain accurate prediction models becomes the
key challenge for improving controller performance. This paper
proposes an online system identification method based on an
extended active observer (EAOB) and the recursive least squares
with variable forgetting factor (RLS-VFF) algorithm to estimate
environmental disturbances and identify uncertain hydrodynamic
parameters. The estimated disturbances and parameters are
continuously updated in the MPC’s prediction model to generate
optimal control inputs based on the real-time environment and
vehicle conditions. The proposed approach is validated through
the Gazebo and robot operating system (ROS) simulation envi-
ronment, demonstrating its effectiveness in handling uncertainties
and disturbances for UUV control.

Index Terms—Unmanned underwater vehicle, model predictive
control, adaptive control, system identification

I. INTRODUCTION

Unmanned underwater vehicles (UUVs) have gained con-
siderable attention and utilization in various demanding un-
derwater tasks. These applications, such as offshore infras-
tructure inspection [1] [2], geomorphological mapping [3]
[4], and underwater operations [5] [6], have demonstrated
the effectiveness of UUVs in helping or replacing humans
for hazardous and labor-intensive work. Achieving autonomy
for UUVs is currently a major development focus, enabling
them to make decisions and perform tasks without constant
human intervention. In this pursuit, it is crucial to enhance
the control capabilities through designing effective and robust
control algorithms. The motion control systems design for
UUVs poses significant challenges due to the existence of
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highly nonlinear dynamics, parametric uncertainties, system
constraints, and unpredictable external disturbances.

Model predictive control (MPC) has emerged as a powerful
technique among control strategies for UUVs [7]. MPC solves
an optimal control problem (OCP) iteratively over a finite
time horizon, allowing it to handle system constraints and
optimize control performance for multiple inputs and multiple
outputs (MIMO) systems. This makes it particularly well-
suited for marine robotics, as it can handle control limits,
control variation bounds, and state constraints effectively. To
address the inherent nonlinear dynamics of complex UUV
systems, nonlinear model predictive control (NMPC) has been
developed as the baseline controller in this work. However,
the accuracy of the prediction model greatly influences the
performance of MPC. Designing control systems for UUVs
poses significant challenges due to parametric uncertainty. This
uncertainty arises from the difficulty in precisely identifying
hydrodynamic coefficients that capture the complex interac-
tions between the UUV and its surrounding fluid. While pre-
vious research has discussed the hydrodynamic properties of
UUVs [8] [9], explicitly calculating hydrodynamic coefficients
is typically challenging. Additionally, the dynamics of UUVs
may change over time, introducing further complications for
control tasks. Meanwhile, operating in environments char-
acterized by substantial environmental disturbances, such as
unpredictable currents and waves, can also lead to instability
and performance degradation of the closed-loop control sys-
tem. Effectively addressing these environmental disturbances
is therefore another critical challenge in UUV control.

Various types of improved MPC have been developed to
improve the controller performance. One common method for
improving the control system’s ability to reject disturbances
is to design a disturbance observer (DOB) that estimates and
compensates for disturbances. The combination of MPC and
DOB has been studied in many research works recently. For
instance, a robust MPC based on active disturbance rejection
control (ADRC) has been developed in [10], which used a
discrete extended state observer (ESO) to estimate the effects
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of model uncertainties and external disturbances. In [11], a
nonlinear disturbance observer (NDO) was developed with
a distributed MPC to enable safe navigation and motion
planning of multiple autonomous surface vehicles (ASVs) in
complex coastal environments. A wave predictor has been
integrated into the MPC controller, enabling real-time distur-
bance preview for the controller [12]. Data-driven methods
have also been implemented to learn the dynamic residual to
provide a data-augmented prediction model for the MPC. For
example, a MPC framework with learned residual dynamics
using Gaussian Processes has been proposed in [13] to provide
an accurate dynamics model for better control performance
in high-speed trajectory tracking problems. Additionally, ra-
dial basis function neural networks have been employed to
compensate for unknown dynamics and disturbances in MPC,
enhancing path following performance in surface ships [14].
While these research works have demonstrated enhanced ro-
bustness in MPC by addressing external disturbances and
model uncertainties, they still have certain limitations. For
DOB-based control methods, unmodeled dynamics are simply
treated as part of disturbances to be compensated along with
external disturbances, which cannot provide an accurate model
for MPC. As for data-driven methods, they typically require a
lot of data for training, which can lead to expensive operations.

This work builds upon our previous research [15] that
utilized an extended active observer (EAOB) to estimate
total disturbances, including unmodeled dynamics and en-
vironmental disturbances. Instead of treating all sources of
disturbances as a single variable in each degree-of-freedom
(DOF) using the principle of superposition, this work aims
to develop an online system identification module capable
of identifying uncertain hydrodynamic parameters based on
the overall estimated disturbances provided by the EAOB. To
achieve this, a recursive least squares with variable forgetting
factor (RLS-VFF) algorithm is employed to iteratively update
the estimated parameters in the MPC’s prediction model.
The RLS-VFF algorithm not only adapts to non-stationary
data and time-varying system dynamics but also improves
memory efficiency, making the method both feasible and cost-
effective. The adjustment of the variable forgetting factor in
the algorithm is based on the F-test, which enhances its ability
to detect and adapt to changes in the system.

The remaining sections of this paper are structured as
follows: Section II presents the dynamic model of the UUV;
Section III introduces the incorporation of NMPC with the
proposed online system identification module; Section IV
showcases the simulation results validated using the robot op-
erating system (ROS) and Gazebo; and Section V summarizes
the conclusions and future works of this study.

II. UUV DYNAMICS MODEL

The open-frame BlueROV2 vehicle [16] is utilized in this
work. The BlueROV2 is capable of actuation in four degrees of
freedom (DOFs), including surge, sway, heave, and yaw. For
the sake of completeness, the complete six DOFs’ dynamic
model is presented in this section, but only the disturbances

and hydrodynamic parameters in the aforementioned four
directions are considered in this work. The overall dynamics
model follows Fossen’s equations [17], which include both
rigid-body dynamics and hydrodynamics. The parameter no-
tations in the UUV’s dynamic model are listed in Table I.

TABLE I
NOTATIONS IN THE UUV DYNAMIC MODEL.

Surge Sway Heave Roll Pitch Yaw
Position η x y z ϕ θ ψ
Velocity v u v w p q r
Propulsion Forces and Moments τ X Y Z K M N
Control Inputs u u1 u2 u3 / / u4
Disturbances w Xw Yw Zw Kw Mw Nw

Unmodeled dynamics ∆τ ∆X ∆Y ∆Z ∆K ∆M ∆N
Environmental Disturbance τenv Xenv Yenv Zenv Kenv Menv Nenv
Added Mass MA Xu̇ Yv̇ Zẇ Kṗ Mq̇ Nṙ

Linear Damping DL Xu Yv Zw Kp Mq Nr

Nonlinear Damping DNL Xu|u| Yv|v| Zw|w| Kp|p| Mq|q| Nr|r|

Fig. 1. The body-fixed reference frame and inertial reference frame in the
UUV dynamics model.

The system states consist of positions and velocities, de-
noted as x = [η;v]. The positions η are described in the
inertial reference frame (IRF), while the velocities v are
described in the body-fixed reference frame (BRF). Figure 1
illustrates the two reference frames, where the IRF adopts the
north-east-down (NED) coordinate system in this work. Thus,
the nonlinear dynamic equations of the UUV can be described
as:

ẋ =

[
η̇
v̇

]
=

[
J(η)v

M−1 [τ + τenv −C(v)v −D(v)v − g(η)]

] (1)

where M is the sum of the rigid body mass MRB and the
hydrodynamic added mass MA, τ = K(Au) represents the
combined propulsion forces and moments calculated based on
control allocation matrix A and propulsion matrix K, τenv
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denotes environmental disturbances, C(v) denotes the rigid-
body Coriolis and centripetal forces, D(v) represents hydro-
dynamic damping forces, g(η) is the hydrostatic restoring
forces, and J(η) represents the rotation matrix to convert
linear and angular velocities from body frame to inertial frame.
To simplify the dynamic model, three assumptions are made
as follows:

1) In many practical applications, such as underwater in-
spections or slow-speed data collection tasks, the ve-
locities of open-frame UUVs are often less than a
few meters per second. In such cases, the effects of
Coriolis and centripetal forces caused by added mass
are typically considered negligible.

2) The origin of the BRF is positioned at the UUV’s
geometric center, as well as the center of buoyancy. The
UUV exhibits symmetry in both the port–starboard and
fore–aft plane.

3) The hydrodynamic damping force is modeled by Fossen
damping model [17], which assumes that the UUV is
performing noncoupled motions.

Therefore, the dynamics model can be expanded in each
DOF as:
X = (m−Xu̇)u̇−mrv +mqw + (−Xu −Xu|u||u|)u

+ (W −B) sin θ −Xenv,
(2)

Y = (m− Yv̇)v̇ +mru−mpw + (−Yv − yv|v||v|)v
− (W −B) cos θ sinϕ− Yenv,

(3)

Z = (m− Zẇ)ẇ −mqu+mpv + (−Zw − Zw|w||w|)w
− (W −B) cos θ cosϕ− Zenv,

(4)

K = (Ix −Kṗ)ṗ+ (Iz − Iy)qr + (−Kp −Kp|p||p|)p
+ zgW cos θ sinϕ−Kenv,

(5)

M = (Iy −Mq̇)q̇ + (Ix − Iz)pr + (−Mq −Mq|q||q|)q
+ zgW sin θ −Menv,

(6)

N = (Iz−Nṙ)ṙ+(Iy−Ix)pq+(−Nr−Nr|r||r|)r−Nenv, (7)

where m is the mass of the UUV, Ix, Iy , Iz are inertial
moments, W denotes the UUV’s weight, B denotes the UUV’s
buoyancy, and zg is the distance between the UUV’s center of
gravity and the origin of the BRF in the z-axis.

While it is possible to calculate the hydrodynamic added
mass coefficients of torpedo-shaped UUVs by assuming the
vehicle as an ellipsoid, such as the study in [18], it is
challenging to directly calculate the added mass coefficients
of open-frame UUVs like BlueROV2. Thus, in this work the
added mass

MA = −diag[Xu̇, Yv̇, Zẇ,Kṗ,Mq̇, Nṙ] (8)

is estimated by the online system identification. In the mean-
time, the hydrodynamic damping coefficients are commonly

identified through experiment data, which are difficult to be
calculated directly. Thus, damping forces with both linear and
nonlinear damping coefficients are also treated as variable
parameters to be estimated:

D(v) = DL +DNL(v)

= −diag[Xu, Yv, Zw,Kp,Mq, Nr]

− diag[Xu|u||u|, Yv|v||v|, Zw|w||w|,Kp|p||p|,
Mq|q||q|, Nr|r||r|].

(9)

III. CONTROL FRAMEWORK

After establishing the nominal UUV dynamics model, the
proposed control framework can be achieved by three key
steps: 1) The development of an EAOB based on the extended
Kalman filter (EKF). This EAOB aims to estimate and provide
the total disturbances, encompassing both unmodeled dynam-
ics and external disturbances. These estimated disturbances
are subsequently fed into the RLS-VFF algorithm, which
constitutes the second step. 2) The RLS-VFF algorithm con-
tinuously identifies parameters based on the estimated states
and disturbances obtained from the EAOB. 3) The third step
focuses on the design and implementation of the adaptive
MPC framework. The estimated parameters from the RLS-
VFF are updated to the MPC’s prediction model to provide an
adaptive control law. Thus, the proposed control system can
adapt to varying dynamics and unpredictable environmental
disturbances, and further enhance the control performance. An
optimizer is utilized to solve the OCPs based on a defined
cost function. To enable real-time calculation, the OCP is
discretized within a prediction horizon and solved using multi-
ple shooting schemes. In this research, the implementation is
achieved using the ACADOS open-source software package
for real-time control [19].

Figure 2 illustrates the control framework of the adaptive
MPC proposed in this work, with the pink box highlights the
adaptive mechanism involved in the first and second steps.

A. Observer Design

The EAOB method employed in this research is an enhanced
version of the traditional EKF. Unlike most observers that
make the simplifying assumption of negligible measurement
noise, the EAOB explicitly considers measurement noise as a
crucial factor during the estimation process. This realistic ap-
proach leads to more accurate state estimation, particularly in
underwater scenarios where measurement noise is significant.

The internal disturbance model can be derived from Equa-
tion 1 by moving the disturbance term w to the left side. Since
w is assumed to be a slow time-varying signal, its derivative
is zero. Thus, the disturbance model can be formulated as:{

w = MRBv̇ +C(v)v + g(η)− τ
ẇ = 0,

(10)

where w = τenv +∆τ compresses the superposition of both
environmental disturbances and unmodeled dynamics.

In order to estimate w by the EKF, w is considered as a
system state along with the position η and velocity v. Thus, the
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Fig. 2. Block diagram of the proposed adaptive MPC scheme for the UUV, where the blue box illustrates baseline MPC and control allocation, the yellow
box shows the UUV platform, and the pink module indicates the adaptive module with an observer and identification algorithm.

system state for the observer is x = [η;v;w]. Since the w is
an unmeasurable state, the measurement state of the observer
therefore becomes z = [η;v; τ ].

Thus, the system process model can be represented as:

ẋ(t) = f(x(t), τ (t)) +W (t) W (t) ∼ N (0, Q(t)) (11)

where f(x(t), τ (t)) represents the nonlinear dynamic model,
W (t) represents the zero mean Gaussian process noise with
covariance Q(t). The system process model is run in con-
tinuous time t. The nonlinear function f(x(t), τ (t)) can be
derived from the UUV’s dynamic model in Equation 1 as:

f(x, τ ,w) =

 J(η)v
(MRB)−1[τ +w −C(v)v − g(η)]

ẇ

 .

(12)
Meanwhile, the measurement model z that takes in discrete-

time form can be written as:

zk = h(xk) + Vk Vk ∼ N (0, Rk) (13)

where h(xk) indicates the nonlinear measurement model, Vk

indicates the zero mean Gaussian process noise with covari-
ance Rk. Due to this work is established and validated in the
Gazebo simulation platform, it is necessary to further adjust
the measurement model of η and v based on the specific sen-
sors employed when conducting the real-world experiments.
These sensors may include Doppler velocity log (DVL), ultra-
short baseline (USBL), barometer, and attitude and heading
reference system (AHRS). To estimate w, the equation within
the measurement model that defines the relationship between
w and τ is:

τ = MRBv̇ +C(v)v + g(η)−w. (14)

Taking the partial derivative of f(x(t), τ (t)) and h(xk) at
point xt and τ t, then the linearized state transition matrix
F (t) and measurement matrix Hk can be obtained:

F (t) =
∂f

∂x

∣∣∣∣
x̂(t),τ (t),w(t)

(15)

Hk =
∂h

∂x

∣∣∣∣
x̂k|k−1

(16)

where F (t) specifies the relationship between the current
state and the subsequent predicted state, Hk specifies the
relationship between measurement states and the predicted
system states.

The EKF estimates the system state recursively using
updated measurement state, the system process model, and
the measurement model. Prior to the recursive algorithm,
the initialization of the system state estimation x̂ and the
error covariance matrix P is performed based on the initial
measurement:

x̂ (t0) = E [x (t0)] ,P (t0) = Var [x (t0)] . (17)

The main process of EKF can be divided into predict
part and update part. The predict part of the EKF involves
solving these differential equations to obtain the predicted
state estimate x̂k|k−1 and the predicted error covariance matrix
P k|k−1 at time tk, given the previous state estimate x̂k−1|k−1

and error covariance matrix P k−1|k−1 at time tk−1. The
discretization step is necessary in the predict part to obtain
discrete-time system dynamics, as measurements are typically
taken at discrete time intervals. The numerical integration
method used for discretization in this case is the fourth-order
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Runge-Kutta (RK4) method. Thus, the predict part can be
formulated as:

solve
{

˙̂x(t) = f(x̂(t), τ (t))

Ṗ (t) = F (t)P (t) + P (t)F (t)T +Q(t)

with
{

x̂(tk−1) = x̂k−1|k−1

P (tk−1) = P k−1|k−1
⇒

{
x̂k|k−1 = x̂ (tk)
P k|k−1 = P (tk) .

(18)
The update part of the EKF incorporates new measurement

information to refine the state estimate and reduce the uncer-
tainty in the state estimate. The update part involves several
steps:

1) Calculate the innovation or measurement residual ŷk|k
as the difference between the actual measurement zk

and the predicted measurement h(x̂k|k−1).
2) Calculate the Kalman gain Kk using the predicted error

covariance matrix P k|k−1, the measurement matrix Hk,
and the measurement noise covariance matrix Rk.

3) Update the state estimate x̂k|k−1 to obtain the updated
state estimate x̂k|k by adding the weighted innovation
Kkŷk|k.

4) Update the error covariance matrix P k|k−1 to obtain the
updated error covariance matrix P k|k using the Kalman
gain Kk and the measurement matrix Hk.

The above steps can be formulated as:

ŷk|k =
(
zk − h

(
x̂k|k−1

))
Kk = P k|k−1H

T
k

(
HkP k|k−1H

T
k +Rk

)−1

x̂k|k = x̂k|k−1 +Kkŷk|k

P k|k = (I −KkHk)P k|k−1.

(19)

Therefore, the state estimation x̂ = [η̂; v̂; ŵ] can be ob-
tained. The stability analysis of the observer has been studied
in the previous work [15].

B. Identification Algorithm

The observer’s disturbance estimation ŵ includes the su-
perposition of the environmental disturbance τenv and the un-
modeled dynamics ∆τ . Meanwhile, the unmodeled dynamics
encompass the added mass MA (Equation 8) and linear and
nonlinear damping coefficients (Equation 9) as detailed in
Section II. Hence, ŵ can be expressed as:

ŵ = τenv +∆τ

= MAv̇ +DLv +DNL|v|v + τenv.
(20)

In this section, the surge dynamics in Equation 2 is dis-
cussed as an example, while the rest dynamics in Equation
3, 4, and 7 can also be implemented in a similar manner.
Therefore, Equation 20 can be reconstructed for the surge
dynamics as:

X̂w =
[
u̇ u |u|u 1

] 
Xu̇

Xu

Xu|u|
Xext

 (21)

where four unknown parameters can be denoted as

Θ =
[
Xu̇ Xu Xu|u| Xext

]⊤
. (22)

The identification problem involves determining the values
of parameters using input/output discrete data while meeting
specific goodness-of-fit constraints between predicted data and
measurements. Therefore, the Θ can be identified by solving
the cost function:

argmin
Θ⊤=[Xu̇,Xu,Xext]

J(Θ) =

√√√√ 1

N

k=N∑
k=1

[yk −Θ⊤Φk]
2

subject to Xu̇, Xu, Xu|u|, Xext ∈ ℜ

(23)

where N is the total number of samples available, yk is the
observed output (which is equal to X̂w in surge dynamics),
and

Φk =
[
u̇k uk |u|uk 1

]⊤
. (24)

To find the optimal parameters for a cost function, a
common approach is to use the least square (LS) method. LS
identifies parameters by minimizing the sum of the squared
errors between predicted and observed values. In contrast
to LS, which performs regression based on offline collected
data, the RLS algorithm operates online. RLS processes data
sequentially and updates parameter estimates as new data
becomes available. The distinguishing feature of RLS-VFF is
the incorporation of a forgetting factor, which enables a trade-
off between tracking time-varying parameters and robustness
to noise. The forgetting factor determines the weight assigned
to past data points relative to recent data points when updating
parameter estimates. A forgetting factor close to 1 places more
emphasis on past rewards, resulting in low misadjustment
but reduced adaptation ability. Conversely, a forgetting factor
closer to 0 indicates that the agent prioritizes recent rewards,
leading to high adaptation ability but potential susceptibility
to outlier data and instability.

In the standard RLS with forgetting factor (RLS-FF) algo-
rithm, the forgetting factor is typically set as a constant value.
However, in this research, the forgetting factor is considered
as a variable that can be dynamically adjusted based on the
outcome of the F-test. The F-test is a statistical test used
to compare the variances of two samples. In this context,
it is employed to compare the prediction error variance of
two windows of past RLS estimation results: a long window
and a short window. The purpose of this comparison is to
determine whether the variance has increased. The F-test
statistic, denoted as Fk, is calculated as follows:

Fk =
σ2
n

σ2
d

=
1
n

∑n
i=k−n (ei − µn)

2

1
d

∑d
i=k−d (ei − µd)

2
(25)

where n represents the number of samples in the short window,
d represents the number of samples in the long window, σ2

n

is the prediction error variance with n samples, σ2
d is the

prediction error variance with d samples, and d > n ≥ 1.
The prediction error ek can be computed as the difference
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between the observed output yk and the parameter estimate at
time k − 1:

ek = yk − Θ̂T
k|k−1Φk. (26)

By comparing the variance of the prediction errors in the
short and long windows, the F-test provides insights into
whether the system dynamics have changed significantly. If
the F-test statistic exceeds a predefined threshold γ, it indi-
cates that the variance has increased, suggesting a change in
the system dynamics. In such cases, the forgetting factor is
adjusted to respond to these changes and maintain accurate
estimation:

λk =

{
λk−1 +∆λ if Fk < γ
λk−1 −∆λ otherwise (27)

where ∆λ represents the adjustment value for the forgetting
factor.

This approach of using the F-test to adapt the forgetting
factor in RLS-VFF enhances the algorithm’s ability to track
time-varying system dynamics, resulting in improved estima-
tion performance.

In the initialization stage of the RLS-VFF algorithm, the
parameter estimation Θ̂ is initialized to zero. Meanwhile, the
initial value of the error covariance matrix P is determined
based on the forgetting factor λ:

Θ̂k=0 = 0

Pk=0 =
1

λ
I

(28)

where I is the identity matrix.
The RLS-VFF algorithm operates similarly to the Kalman

filters family. At time k, it calculates the Kalman gain Kk

using the forgetting factor λ, the error covariance matrix P
from time k − 1, and the regression factor Φk. Subsequently,
the parameter estimation Θ̂k|k is updated based on the Kalman
gain and the error, and the error covariance matrix Pk|k is also
updated accordingly. The recursive process can be formulated
as:

Kk =
Pk|k−1Φk

λ+ΦT
k Pk|k−1Φk

Θ̂k|k = Θ̂k|k−1 +Kkek

Pk|k =
1

λ

(
Pk|k−1 −KkΦ

T
k Pk|k−1

)
.

(29)

C. Adaptive Model Predictive Control

MPC, also known as receding horizon control, is a widely
used control method in various robotic systems, including
UUVs. In MPC, a control input sequence, represented as
u∗(s) =

{
u∗
0, u

∗
1, . . . , u

∗
T−1

}
, is computed by solving an

online constrained OCP using the current measurements and
system constraints at each time step. Subsequently, the first
element u∗

0 in the control sequence is applied to the system
plant.

Solving the OCPs iteratively online can be computationally
expensive. To address this issue, an open-source software
package called ACADOS is used to generate a fast solver
for the nonlinear system [20]. ACADOS can provide efficient

optimal control algorithms targeting embedded devices imple-
mented in C, which allows for the real-time deployment of the
MPC. The MPC’s optimization problem is formulated as:

min
U,X

∫ T

t=0

∥h(x(t), u(t))− yref∥2Q dt+ ∥h(x(T ))− yN,ref∥2QN

subject to ẋ = f(x(t), u(t))

u(t) ∈ U
x(t) ∈ X

x(0) = x (t0)
(30)

where h(·) represents system output function, f(·) represents
system dynamics function, x and u correspond system states
and control inputs, T denotes prediction horizon, yref and
yN,ref are reference states and terminal reference states re-
spectively, subsequently, Q and QN are state and terminal cost
matrices. The control inputs u(t) are constrained to the set of
feasible control inputs U, while the states are constrained to
X. Additionally, the initial state x(0) is set to the value of the
states at time t0.

The comprehensive adaptive MPC framework is outlined in
Algorithm 1.

Algorithm 1 Adaptive MPC with online system identification
1: Initialization:
2: Initialize EAOB, RLS-VFF based on Equation 17, 28
3: while t≥0 do
4: Measure z = [η;v; τ ]
5: Estimate x̂ = [η̂; v̂; ŵ] with EAOB by Equation

18, 19
6: Calculate Fk by Equation 25
7: if Fk > γ then
8: Update forgetting factor λk = λk−1 −∆λ
9: else

10: Update forgetting factor λk = λk−1 +∆λ

11: Estimate Θ̂ = [Xu̇XuXu|u|Xext]
T with RLS-VFF

by Equation 29
12: Update MPC control law: τ = K(Au) =

MRBv̇ + C(v)v + g(η)− Θ̂TΦ
13: Solve the OCP to obtain the optimized control

sequence u∗(s) by Equation 30
14: Implement the first element u∗

0 in the optimized
control sequence to the UUV

15: end while

IV. RESULTS

To perform online system identification, the UUV’s motion
in each DOF must be captured for training and regression with
the RLS-VFF. Therefore, a reference trajectory is specified for
training purposes and provided to the MPC before executing
other trajectory tracking tasks. The entire training process
spans 40 seconds, with the following breakdown: 1) Surge
dynamics training: begins at 0 seconds and concludes at 10
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Fig. 3. Online system identification results of added mass, linear damping coefficients, nonlinear damping coefficients, and environmental disturbances using
the RLS-FF and the RLS-VFF during the training process without applied environmental disturbances.

seconds; 2) Sway dynamics training: commences at 10 seconds
and finishes at 20 seconds; 3) Heave dynamics training:
initiates at 20 seconds and terminates at 30 seconds; 4) Yaw
dynamics training: starts at 30 seconds and concludes at 40
seconds.

In this study, the number of samples in the short and long
windows are set as n = 10 and d = 50. A smaller n makes
the F-test more sensitive to system changes, resulting in a fast
adjusting forgetting factor. Additionally, the threshold value γ
is set to 0.8. The estimated parameters in Θ̂ obtained using the
RLS-VFF algorithm are compared with those obtained using
the standard RLS-FF algorithm with a forgetting factor of 0.98.
Since the work is conducted in Gazebo, the parameters defined
in the Gazebo’s unified robot description format (URDF) file
are used as a benchmark for comparison with the estimation
results.

Figure 3 presents the system identification results in the
absence of additional environmental disturbances. In this
scenario, the system can be considered as slowly changing.
Consequently, the F-test value remains below the threshold γ

for most of the time, causing the variable forgetting factor to
approach 1. As a result, the estimation results obtained using
the RLS-VFF, represented by the blue line, exhibit a slower
convergence rate but higher stability, resulting in a smoother
line.

On the other hand, Figure 4 demonstrates the system identi-
fication results with the introduction of additional environmen-
tal disturbances of 5N in the x, y, and z directions in the IRF.
Since the environmental disturbances term τenv is defined in
the BRF in the UUV dynamics model, it has been transformed
to the IRF using a rotation matrix for a clearer presentation
of the results. After 30 seconds, the orientation of the UUV
begins to change to train the yaw dynamics. Consequently,
the environmental disturbances acting on the BRF also start to
change, leading to a faster changing system. In this situation,
the standard RLS-FF struggles to adapt to these changes
quickly and stably, resulting in significant chattering in the
red line. In contrast, the proposed RLS-VFF still manages to
converge to the defined parameters swiftly.

The performance of the proposed adaptive MPC algorithm
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Fig. 4. Online system identification results of added mass, linear damping coefficients, nonlinear damping coefficients, and environmental disturbances using
the RLS-FF and the RLS-VFF during the training process with applied environmental disturbances.

is evaluated in comparison to a standard MPC controller and a
PID controller. Both the adaptive MPC and the standard MPC
employ the same control parameters, as detailed in Table II.
Meanwhile, the PID controller’s control gains are specified
in Table III. A lemniscate trajectory with amplitude of 2
meters is employed as trajectory tracking control problem for
these controllers. Furthermore, the additional environmental
disturbances of 10N are also applied in the x, y, and z
directions in the IRF.

TABLE II
MPC PARAMETERS UTILIZED IN THIS WORK.

Parameters Value
Prediction horizon 60
Sample time (s) 0.05
Q [300 300 150 10 10 150 10 10 10 10 10 10 1 1 1 0.5]
QN [300 300 150 10 10 150 10 10 10 10 10 10]
OCP time (ms) 7

Figure 5 presents the control outcomes achieved by the
adaptive MPC, standard MPC, and PID controllers in tracking

the lemniscate trajectory. The subplots indicate the three-
dimensional trajectory tracking results, control inputs, tracking
errors, and tracking states, respectively. These results demon-
strate the substantial improvement in control performance
achieved by employing the proposed adaptive MPC algorithm,
even when faced with a highly nonlinear tracking problem and
the presence of environmental disturbances.

TABLE III
PID PARAMETERS UTILIZED IN THIS WORK.

Control gain Surge Sway Heave Yaw
Kp 5 5 5 7
Ki 0.05 0.05 0.05 0.1
Kd 1.2 1.2 1.2 0.6

V. CONCLUSION

In this study, an effective adaptive control method is pro-
posed by integrating a fast system identification module with
MPC for UUVs’ motion control in complex underwater en-
vironments. Unlike conventional offline system identification,
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Fig. 5. Control results of lemniscate trajectory tracking using the proposed adaptive MPC, standard MPC, and PID controllers.

the proposed approach utilizes RLS-VFF for online real-time
adaptation of the system model when new measurement data
is available. This incremental update of model parameters
enables continuous learning and tracking of system dynamics.
Additionally, RLS-VFF offers computational efficiency by
avoiding the need to recompute the regression from scratch
for each new data point. By incorporating a variable forgetting
factor, the algorithm determines the weight between recent and
past data based on the F-test. The F-test assesses if the system
has undergone significant changes, and if so, the algorithm
gradually reduces the influence of older data to enable rapid
and stable adaptation. Another key aspect of the proposed
control framework is the utilization of an EAOB for capturing
unmodeled dynamics and environmental disturbances. This
feature reduces sensitivity to measurement noise and inaccu-
racies. By improving the accuracy of the prediction model
in MPC and compensating for environmental disturbances,
the proposed method achieves a reliable controller with the
capability of adapting to unknown environments and delivering
superior control performance.
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